Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A confirmation of the general relativistic prediction of the Lense–Thirring effect


An important early prediction of Einstein's general relativity1,2,3 was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory4. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system5,6 and to an Earth-orbiting satellite3. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it3,7, which will affect the orbit of a satellite8. This Lense–Thirring effect has hitherto not been detected with high accuracy9, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B—an ongoing space mission using orbiting gyroscopes10. Here we report a measurement of the Lense–Thirring effect on two Earth satellites: it is 99 ± 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total ± 10 per cent uncertainty to include underestimated and unknown sources of error.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ‘orbital gyroscope’ used to measure the Lense–Thirring effect.
Figure 2: Observed orbital residuals of the LAGEOS satellites.
Figure 3: Post-fit orbital residuals of the LAGEOS satellites.


  1. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  2. Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  3. Ciufolini, I. & Wheeler, J. A. Gravitation and Inertia (Princeton Univ. Press, Princeton, New Jersey, 1995)

    MATH  Google Scholar 

  4. Will, C. M. Theory and Experiment in Gravitational Physics 2nd edn (Cambridge Univ. Press, Cambridge, UK, 1993); The confrontation between general relativity and experiment. 〈〉 (2001)

    Book  Google Scholar 

  5. Hulse, R. A. & Taylor, J. H. Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53 (1975)

    Article  ADS  Google Scholar 

  6. Nordtvedt, K. Existence of the gravitomagnetic interaction. Int. J. Theor. Phys. 27, 1395–1404 (1988)

    Article  CAS  Google Scholar 

  7. Thorne, K. S., Price, R. H. & Macdonald, D. A. The Membrane Paradigm (Yale Univ. Press, New Haven, 1986)

    MATH  Google Scholar 

  8. Lense, J. & Thirring, H. Uber den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918)

    MATH  Google Scholar 

  9. Ciufolini, I. in A Relativistic Spacetime Odyssey, Proc. 25th Johns Hopkins Workshop on Current Problems in Particle Theory (eds Ciufolini, I., Dominici, D. & Lusanna, L.) 99–139 (World Scientific, Singapore, 2003)

    Google Scholar 

  10. Fitch, V. L. et al. Review of Gravity Probe B (National Academic Press, Washington DC, 1995)

    Google Scholar 

  11. Williams, J. G., Boggs, D. H., Dickey, J. O. & Folkner, W. M. in Proc. 9th Marcel Grossmann Meeting (eds Gurzadyan, V. G., Jantzen, R. T. & Ruffini, R.) 1797–1798 (World Scientific, Singapore, 2002)

    Book  Google Scholar 

  12. Shapiro, I. I., Reasenberg, R. D., Chandler, J. F. & Babcock, R. W. Measurement of the de Sitter precession of the Moon. Phys. Rev. Lett. 61, 2643–2646 (1988)

    Article  ADS  Google Scholar 

  13. Rees, M. J. in Black Holes in Binaries and Galactic Nuclei, Proc. ESO Workshop (eds Kaper, L., van den Heuvel, E. P. J. & Woudt, P. A.) 351–363 (Springer, Heidelberg, 2001)

    Google Scholar 

  14. Genzel, R. et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 425, 934–937 (2003)

    Article  ADS  CAS  Google Scholar 

  15. LAGEOS scientific results. J. Geophys. Res. B 90, 9215–9438 (1985)

  16. Bender, P. & Goad, C. C. in Proc. 2nd Int. Symp. on the Use of Artificial Satellites for Geodesy and Geodynamics Vol. II (eds Veis, G. & Livieratos, E.) 145 (National Technical University of Athens, Athens, 1979)

    Google Scholar 

  17. Reigber, C. et al. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. (in the press)

  18. Bertotti, B., Farinella, P. & Vokrouhlický, D. Physics of the Earth and the Solar System 2nd edn (Kluwer Academic, Dordrecht, 2003)

    Book  Google Scholar 

  19. Ciufolini, I. Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)

    Article  ADS  CAS  Google Scholar 

  20. Noomen, R., Klosko, S., Noll, C. & Pearlman, M. (eds) Toward millimeter accuracy. Proc. 13th Int. Laser Ranging Workshop (NASA CP 2003–212248, NASA Goddard, Greenbelt, MD, 2003)

  21. Pavlis, D. E. et al. GEODYN Systems Description Vol. 3 (NASA GSFC, Greenbelt, MD, 1998)

    Google Scholar 

  22. McCarthy, D. The 1996 IERS Conventions (Observatoire de Paris, Paris, 1996)

    Google Scholar 

  23. Rubincam, D. P. Yarkovsky thermal drag on LAGEOS. J. Geophys. Res. B 93, 13805–13810 (1988)

    Article  ADS  Google Scholar 

  24. Rubincam, D. P. Drag on the LAGEOS satellite. J. Geophys. Res. B 95, 4881–4886 (1990)

    Article  ADS  Google Scholar 

  25. Rubincam, D. P. & Mallama, A. Terrestrial atmospheric effect on satellite eclipses with application to the acceleration of LAGEOS. J. Geophys. Res. B 100, 20285–20290 (1995)

    Article  ADS  Google Scholar 

  26. Martin, C. F. & Rubincam, D. P. Effects of Earth albedo on the LAGEOS I satellite. J. Geophys. Res. B 101, 3215–3226 (1996)

    Article  ADS  Google Scholar 

  27. Andrés, J. I. et al. Spin axis behavior of the LAGEOS satellites. J. Geophys. Res. 109, B06403 (2004)

    Article  ADS  Google Scholar 

  28. Ray, R. D. A Global Ocean Tide Model from Topex/Poseidon Altimetry: GOT99.2 (NASA Tech. Memo. 209478, NASA GSFC, Greenbelt, MD, 1999)

    Google Scholar 

  29. Ciufolini, I. A comprehensive introduction to the LAGEOS gravitomagnetic experiment. Int. J. Mod. Phys. A 4, 3083–3145 (1989)

    Article  ADS  CAS  Google Scholar 

  30. Ciufolini, I. et al. WEBER-SAT/LARES Study for INFN (Università di Lecce, Lecce, 2004)

    Google Scholar 

  31. Ries, J. C., Eanes, R. J., Watkins, M. M. & Tapley, B. in LARES Phase A Study for ASI (ed. Ciufolini, I.) (Italian Space Agency, Rome, 1998)

    Google Scholar 

Download references


We thank the International Laser Ranging Service (ILRS) for making available for our use the laser ranging data collected by their network, through their data service at CDDIS, NASA/Goddard, USA, and the GeoForschungsZentrum, Potsdam, Germany. E.C.P. acknowledges support from NASA. I.C. thanks R. Matzner and N. Cabibbo for comments. We thank R. Peron for reading the manuscript and, together with G. Chionchio, D. Lucchesi, D. Pavlis and F. Ricci, for computer support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. Ciufolini.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Discussion

Error analysis and error budget of the measurement of the lense-thirring effect using the nodes of Lageos and Lageos 2. (DOC 45 kb)

Supplementary Figures 1S and 2S

Additional N-frequency fits of the lense-thirring effect. (DOC 256 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciufolini, I., Pavlis, E. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing