
with the exception that ChIP assays were performed on cells harvested 72 h following a
single transfection with dsRNA. dRing dsRNA including exonic sequences extending
from 167 to 1,154 base pairs (bp) downstream of the ATG was synthesized by bi-
directional transcription of RT–PCR products containing T7 promoter sequences at both
ends. Isolation of wing imaginal discs and ChIP assays were performed as previously
described22.

Information for purification and identification of histone H2A ubiquitin ligase
complex, for generation and characterization of Ring2 knock-down cell lines, as well as
for the specificity of the uH2A antibody, is available in Supplementary Methods and
Supplementary Data.
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corrigenda

The lipid phosphatase SHIP2
controls insulin sensitivity
S. Clément, U. Krause, F. Desmedt, J.-F. Tanti, J. Behrends, X. Pesesse,
T. Sasaki, J. Penninger, M. Doherty, W. Malaisse, J. E. Dumont,
Y. Le Marchand-Brustel, C. Erneux, L. Hue & S. Schurmans

Nature 409, 92–96 (2001).
.............................................................................................................................................................................

In this Letter, we investigated the production and the phenotypic
characterization of a SHIP2 (SH2 domain containing inositol
phosphate 5-phosphatase type 2, or Inppl1) knockout mice. Total
or partial loss of SHIP2 enzyme in these mice resulted in an
increased insulin sensitivity. From these experiments, we concluded
that SHIP2 is a potent negative regulator of insulin signalling and
insulin sensitivity in vivo. However, we have recently realized that
the 7.3-kilobase genomic DNA fragment deleted in these mice
includes, in addition to exons 19–29 of the SHIP2 gene, the third
(and last) exon of the Phox2a gene. The deletion of this exon results
in the absence of the 124 carboxy-terminal amino acids from a total
of 280, including part of the homeodomain, and should give rise to
a completely non-functional Phox2a protein if expressed. As a
consequence, the mice we described have both SHIP2 and Phox2a
genes inactivated. It is currently unknown whether the increased
insulin sensitivity we observed in our mice results from the
inactivation of the SHIP2 gene alone, of the Phox2a gene alone, or
of both genes. A
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corrigendum

Induction of DNA methylation and
gene silencing by short interfering
RNAs in human cells
Hiroaki Kawasaki & Kazunari Taira

Nature 431, 211–217 (2004).
.............................................................................................................................................................................

In the Methods section of this Letter, the published primer
sequences used to amplify the E-cadherin and erbB2 promoters
for bisulphite sequencing were incorrect. We used two primer sets,
one for unconverted DNAs and the other for converted DNAs.
Primers for unconverted DNAs were: for the E-cadherin promoter,
the forward primer was 5

0
-TCTAGAAAAATTTTTTAAAAA-3

0
and

the reverse primer was 5 0 -CAGCGCCGAGAGGCTGCGGCT-3 0 ; for
the erbB2 promoter, the forward primer was 5 0-CCTGGAAGCCA-
CAAGGTAAAC-3

0
and reverse primer was 5

0
-TTTCTCCGG

TCCCAATGGAGG-3 0 . Primers for converted DNAs were: for
the E-cadherin promoter, the forward primer was 5 0-TTTA-
GAAAAATTTTTTAAAAA-3

0
and the reverse primer was 5

0
-CAA-

CACCAAAAAACTACAACT-3
0
; for the erbB2 promoter, the

forward primer was 5 0 -TTTGGAAGTTATAAGGTAAAT-3 0 and
the reverse primer was 5 0-TTTCTCCAATCCCAATAAAAA-3 0 . A
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