Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An interplanetary shock traced by planetary auroral storms from the Sun to Saturn


A relationship between solar activity and aurorae on Earth was postulated1,2 long before space probes directly detected plasma propagating outwards from the Sun3. Violent solar eruption events trigger interplanetary shocks4 that compress Earth's magnetosphere, leading to increased energetic particle precipitation into the ionosphere and subsequent auroral storms5,6. Monitoring shocks is now part of the ‘Space Weather’ forecast programme aimed at predicting solar-activity-related environmental hazards. The outer planets also experience aurorae, and here we report the discovery of a strong transient polar emission on Saturn, tentatively attributed to the passage of an interplanetary shock—and ultimately to a series of solar coronal mass ejection (CME) events. We could trace the shock-triggered events from Earth, where auroral storms were recorded, to Jupiter, where the auroral activity was strongly enhanced, and to Saturn, where it activated the unusual polar source. This establishes that shocks retain their properties and their ability to trigger planetary auroral activity thoughout the Solar System. Our results also reveal differences in the planetary auroral responses on the passing shock, especially in their latitudinal and local time dependences.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Discovery of an auroral storm on Saturn.
Figure 2: Geometrical configuration of the planets in late 2000.
Figure 3: Synoptic view of the CME-driven shock propagation and auroral consequences.


  1. de Mairan, J. J. Traité Physique et Historique de l'Aurore Boréale 245–279 (Mémoire de l'Académie Royale des Sciences, Imprimerie Royale, Paris, 1733)

    Google Scholar 

  2. Chapman, S. & Ferraro, V. C. A. A new theory of magnetic storms. Nature 126, 129 (1930); Terr. Magn. Atmos. Electr. 36, 171–186 (1931); Terr. Magn. Atmos. Electr. 37, 147–156 (1932)

    ADS  Article  Google Scholar 

  3. Licht, A. L. Properties of the solar wind during sunspot minimum. J. Geophys. Res. 65, 1397–1400 (1960)

    ADS  Article  Google Scholar 

  4. Greenstadt, E. W. Interplanetary magnetic effects of solar flares: Explorer 18 and Pioneer 5. J. Geophys. Res. 70, 5451–5452 (1965)

    ADS  Article  Google Scholar 

  5. Snyder, C. W., Neugebauer, M. & Rao, U. R. The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res. 68, 6361–6370 (1963)

    ADS  Article  Google Scholar 

  6. Axford, W. I. The interaction between the solar wind and the earth's magnetosphere. J. Geophys. Res. 67, 3791–3796 (1962)

    ADS  Article  Google Scholar 

  7. Carr, T. D. Jupiter's decametric rotation period and the source A emission beam. Phys. Earth Planet. Inter. 6, 21–28 (1972)

    ADS  Article  Google Scholar 

  8. Zarka, P. Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res. 103, 20159–20194 (1998)

    ADS  Article  Google Scholar 

  9. Broadfoot, A. L. et al. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science 204, 979–982 (1979)

    ADS  CAS  Article  Google Scholar 

  10. Clarke, J. T. et al. Spatial imaging of hydrogen Lyman-alpha emission from Jupiter. Astrophys. J. 240, 696–701 (1980)

    ADS  CAS  Article  Google Scholar 

  11. Broadfoot, A. L. et al. Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science 212, 206–211 (1981)

    ADS  CAS  Article  Google Scholar 

  12. Gallagher, D. L. & D'Angelo, N. Correlation between solar wind parameters and auroral kilometric radiation intensity. Geophys. Res. Lett. 8, 1087–1089 (1981)

    ADS  Article  Google Scholar 

  13. Zarka, P. & Genova, F. Low-frequency jovian emission and solar wind magnetic sector structure. Nature 306, 767–768 (1983)

    ADS  Article  Google Scholar 

  14. Desch, M. D. & Barrow, C. H. Direct evidence for solar wind control of Jupiter's hectometer wavelength radio emission. J. Geophys. Res. 89, 6819–6823 (1984)

    ADS  Article  Google Scholar 

  15. Rabl, G. K. F. Periodicities of jovian broad-band kilometric radiation observed by Ulysses. Planet. Space Sci. 41, 1079–1083 (1993)

    ADS  Article  Google Scholar 

  16. Desch, M. D. & Rucker, H. O. The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88, 8999–9006 (1983)

    ADS  Article  Google Scholar 

  17. Cowley, S. H. W., Bunce, E. J. & Prangé, R. Saturn's polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22, 2685–2688 (2004)

    Article  Google Scholar 

  18. Vasyliunas, V. M. in Physics of the Jovian Magnetosphere (ed. Dessler, A. J.) 395–453 (Cambridge Univ. Press, Cambridge, UK, 1990)

    Google Scholar 

  19. Prangé, R. et al. Detailed study of FUV Jovian auroral features with the post COSTAR Hubble Faint Object Camera. J. Geophys. Res. 103, 20195–20210 (1998)

    ADS  Article  Google Scholar 

  20. Pallier, L. & Prangé, R. More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159–1173 (2001)

    ADS  Article  Google Scholar 

  21. Gurnett, D. A. et al. Control of Jupiter's radio emission and aurorae by the solar wind. Nature 415, 985–987 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Trauger, J. et al. Saturn's hydrogen aurora: Wide field and planetary camera 2 imaging from the Hubble Space Telescope. J. Geophys. Res. 103, 20237–20244 (1998)

    ADS  Article  Google Scholar 

  23. Tòth, G. Versatile Advection Code; code available at 〈〉 (1994).

  24. Hanlon, P. G. et al. On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region. J. Geophys. Res. 109, doi:10.1029/2003JA010112 (2004)

  25. Frank, L. A. & Craven, J. D. Imaging results from Dynamics Explorer. Rev. Geophys. 26, 249–283 (1988)

    ADS  Article  Google Scholar 

  26. Pallier, L. & Prangé, R. Detection of the southern counterpart of the jovian northern polar cusp. Shared properties. Geophys. Res. Lett. 31, doi:10.1029/2003GL018041 (2004)

  27. Lockwood, M. et al. The ionospheric signature of flux transfer events and solar wind dynamic pressure changes. J. Geophys. Res. 95, 17113–17135 (1990)

    ADS  Article  Google Scholar 

  28. Sandholt, P. E., Farrugia, C. J., Moen, J., Cowley, S. W. H. & Lybekk, B. Dynamics of the aurora and associated currents during a cusp bifurcated event. Geophys. Res. Lett. 25, 4313–4316 (1981)

    ADS  Article  Google Scholar 

  29. Milan, S. E., Lester, M., Cowley, S. W. H. & Brittnacher, M. Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field. Ann. Geophys. 18, 436–444 (2004)

    ADS  Article  Google Scholar 

  30. Galopeau, P. H. M., Zarka, P. & Le Quéau, D. Source location of Saturn's kilometric radiation: The Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 100, 26337–26410 (1998)

    Google Scholar 

Download references


This work is based partly on observations with the NASA/ESA HST obtained at the STScI, which is operated by the AURA, Inc. for NASA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Renée Prangé.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prangé, R., Pallier, L., Hansen, K. et al. An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78–81 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing