Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila


All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this ‘Drosophila stress odorant (dSO)’ as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shits)1, blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Drosophila exhibits innate avoidance of odorants released by stressed flies.
Figure 2: CO2 is a component of dSO.
Figure 3: CO2 avoidance is mediated by ORNs that project to the V glomerulus.
Figure 4: A dSO-unresponsive enhancer trap line is also defective in its CO2 response.


  1. 1

    Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)

    CAS  Article  Google Scholar 

  2. 2

    Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G. & Benzer, S. dunce, a mutant of Drosophila deficient in learning. Proc. Natl Acad. Sci. USA 73, 1684–1688 (1976)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994)

    CAS  Article  Google Scholar 

  4. 4

    Heisenberg, M. Mushroom body memoir: from maps to models. Nature Rev. Neurosci. 4, 266–275 (2003)

    CAS  Article  Google Scholar 

  5. 5

    Heimbeck, G., Bugnon, V., Gendre, N., Keller, A. & Stocker, R. F. A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 15336–15341 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Wang, Y. et al. Blockade of neurotransmission in Drosophila mushroom bodies impairs odor attraction, but not repulsion. Curr. Biol. 13, 1900–1904 (2003)

    CAS  Article  Google Scholar 

  7. 7

    de Belle, J. S. & Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692–695 (1994)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003)

    CAS  Article  Google Scholar 

  9. 9

    Stange, G. & Stowe, S. Carbon-dioxide sensing structures in terrestrial arthropods. Microsc. Res. Tech. 47, 416–427 (1999)

    CAS  Article  Google Scholar 

  10. 10

    Stensmyr, M. C., Giordano, E., Balloi, A., Angioy, A. M. & Hansson, B. S. Novel natural ligands for Drosophila olfactory receptor neurones. J. Exp. Biol. 206, 715–724 (2003)

    CAS  Article  Google Scholar 

  11. 11

    de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001)

    CAS  Article  Google Scholar 

  12. 12

    Kent, K. S., Harrow, I. D., Quartararo, P. & Hildebrand, J. G. An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res. 245, 237–245 (1986)

    CAS  Article  Google Scholar 

  13. 13

    Bogner, F., Boppre, M., Ernst, K. D. & Boeckh, J. CO2 sensitive receptors on labial palps of Rhodogastria moths (Lepidoptera: Arctiidae): physiology, fine structure and central projection. J. Comp. Physiol. A 158, 741–749 (1986)

    CAS  Article  Google Scholar 

  14. 14

    Distler, P. & Boeckh, J. Central projections of the maxillary and antennal nerves in the mosquito Aedes aegypti. J. Exp. Biol. 200, 1873–1879 (1997)

    CAS  PubMed  Google Scholar 

  15. 15

    Anton, S. Central olfactory pathways in mosquitoes and other insects. Ciba Found. Symp. 200, 184–192; discussions 192–196, 226–232 (1996)

    CAS  PubMed  Google Scholar 

  16. 16

    Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Stocker, R. F., Heimbeck, G., Gendre, N. & de Belle, J. S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997)

    CAS  Article  Google Scholar 

  18. 18

    Shorey, H. H. Behavioral responses to insect pheromones. Annu. Rev. Entomol. 18, 349–380 (1973)

    CAS  Article  Google Scholar 

  19. 19

    Stange, G. in Advances in Bioclimatology (ed. Stanhill, G.) 223–253 (Springer, Berlin, 1996)

    Book  Google Scholar 

  20. 20

    Enserink, M. What mosquitoes want: secrets of host attraction. Science 298, 90–92 (2002)

    CAS  Article  Google Scholar 

  21. 21

    Galizia, C. G., Sachse, S., Rappert, A. & Menzel, R. The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nature Neurosci. 2, 473–478 (1999)

    CAS  Article  Google Scholar 

  22. 22

    Wang, Y. et al. Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29, 267–276 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002)

    CAS  Article  Google Scholar 

  24. 24

    Wilson, R. I., Turner, G. C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Rev. Neurosci. 3, 884–895 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Christensen, T. A., Harrow, I. D., Cuzzocrea, C., Randolph, P. W. & Hildebrand, J. G. Distinct projections of two populations of olfactory receptor axons in the antennal lobe of the sphinx moth Manduca sexta. Chem. Senses 20, 313–323 (1995)

    CAS  Article  Google Scholar 

  27. 27

    Hansson, B. S., Carlsson, M. A. & Kalinova, B. Olfactory activation patterns in the antennal lobe of the sphinx moth, Manduca sexta. J. Comp. Physiol. A 189, 301–308 (2003)

    CAS  Google Scholar 

  28. 28

    Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997)

    CAS  Article  Google Scholar 

  29. 29

    Connolly, J. B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Beck, C. D., Schroeder, B. & Davis, R. L. Learning performance of normal and mutant Drosophila after repeated conditioning trials with discrete stimuli. J Neurosci 20, 2944–53 (2000)

    CAS  Article  Google Scholar 

Download references


We thank J.-S. Chang for technical assistance, L. Vosshall for providing Or83b-Gal4 and Or47b-Gal4 flies and for other unpublished information, D. Armstrong for Gal4 enhancer trap lines 103Y, 253Y, c747 and c761, T. Kitamoto for UAS-Shits flies, U. Heberlein for the HU protocol and R. I. Wilson for discussion of unpublished data and comments on the manuscript. G.S.B.S. is a recipient of a National Research Service Award. A.C.H. is supported by a Howard Hughes Predoctoral fellowship. This work was supported by the HHMI (R.A. and D.J.A.) and by the NSF (S.B.). R.A. and D.J.A. are Investigators of the Howard Hughes Medical Institute.Author contributions S.B., R.A. and D.J.A. made equally minimal contributions to this work.

Author information



Corresponding author

Correspondence to David J. Anderson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Dose-response curve for avoidance response to CO2 (a) and dose-response curve for activation of GR21A+ neurons to CO2 (b). (DOC 197 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suh, G., Wong, A., Hergarden, A. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing