Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low marine sulphate and protracted oxygenation of the Proterozoic biosphere

Abstract

Progressive oxygenation of the Earth's early biosphere is thought to have resulted in increased sulphide oxidation during continental weathering, leading to a corresponding increase in marine sulphate concentration1. Accurate reconstruction of marine sulphate reservoir size is therefore important for interpreting the oxygenation history of early Earth environments. Few data, however, specifically constrain how sulphate concentrations may have changed during the Proterozoic era (2.5–0.54 Gyr ago). Prior to 2.2 Gyr ago, when oxygen began to accumulate in the Earth's atmosphere2,3, sulphate concentrations are inferred to have been <1 mM and possibly <200 µM, on the basis of limited isotopic variability preserved in sedimentary sulphides4 and experimental data showing suppressed isotopic fractionation at extremely low sulphate concentrations1,5. By 0.8 Gyr ago, oxygen and thus sulphate levels may have risen significantly6,7. Here we report large stratigraphic variations in the sulphur isotope composition of marine carbonate-associated sulphate, and use a rate-dependent model for sulphur isotope change that allows us to track changes in marine sulphate concentrations throughout the Proterozoic. Our calculations indicate sulphate levels between 1.5 and 4.5 mM, or 5–15 per cent of modern values, for more than 1 Gyr after initial oxygenation of the Earth's biosphere. Persistence of low oceanic sulphate demonstrates the protracted nature of Earth's oxygenation. It links biospheric evolution to temporal patterns in the depositional behaviour of marine iron- and sulphur-bearing minerals4, biological cycling of redox-sensitive elements6 and availability of trace metals essential to eukaryotic development8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sensitivity of the marine sulphate system to reservoir size.
Figure 2: Isotopic composition of CAS from Mesoproterozoic strata.
Figure 3: Proterozoic marine sulphate concentrations.

Similar content being viewed by others

References

  1. Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influences of the Earth's earliest sulfur cycle. Science 289, 756–758 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise in atmospheric oxygen. Geology 24, 867–870 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2375 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Canfield, D. E. & Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–132 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Habicht, K. S. & Canfield, D. E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology 29, 555–558 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions; carbonates and organic matter. Chem. Geol. 161, 181–198 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Staudt, W. J. & Schoonen, M. A. A. Sulfate incorporation into sedimentary carbonates. Am. Chem. Soc. Symp. 612, 332–345 (1995)

    CAS  Google Scholar 

  11. Burdett, J. W., Arthur, M. A. & Richardson, M. A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils. Earth Planet. Sci. Lett. 94, 189–198 (1989)

    Article  ADS  CAS  Google Scholar 

  12. Lyons, T. W., Luepke, J. J., Schreiber, M. E. & Zeig, G. A. Sulfur geochemical constraints on Mesoproterozoic restricted marine deposition: Lower Belt Supergroup, northwestern United States. Geochim. Cosmochim. Acta 64, 427–437 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Strauss, H. The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 97–118 (1997)

    Article  Google Scholar 

  14. Paytan, A., Kastner, M., Campbell, D. & Thiemans, M. H. Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282, 1459–1462 (1998)

    Article  CAS  Google Scholar 

  15. Kampschulte, A., Bruckschen, P. & Strauss, H. The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy. Chem. Geol. 175, 149–173 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Hurtgen, M. T., Arthur, M. A., Suits, N. & Kaufman, A. J. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth Planet. Sci. Lett. 203, 413–429 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Luepke, J. J. & Lyons, T. W. Pre-Rodinian (Mesoproterozoic) supercontinental rifting along the western margin of Laurentia: geochemical evidence from the Belt-Purcess Supergroup. Precambr. Res. 111, 79–90 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Whelan, J. F., Rye, R. O., deLorraine, W. & Ohmoto, H. Isotopic geochemistry of a mid-Proterozoic evaporite basin: Balmat, New York. Am. J. Sci. 290, 396–424 (1990)

    Article  ADS  Google Scholar 

  19. Gellatly, A. M. & Lyons, T. W. Trace sulfate in Mid-Proterozoic carbonates and the sulfur isotope record. Geochim. Cosmochim. Acta (in the press)

  20. Azmy, K. et al. Dolomitization and isotope stratigraphy of the Vazante Formation, São Francisco Basin, Brazil. Precambr. Res. 112, 303–329 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Kah, L. C., Lyons, T. W. & Chesley, J. T. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambr. Res. 111, 203–234 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Frank, T. D., Kah, L. C. & Lyons, T. W. Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean. Geol. Mag. 140, 373–396 (2003)

    Article  Google Scholar 

  23. Bosscher, H. & Schlager, W. Accumulation rates of carbonate platforms. J. Geol. 101, 345–355 (1993)

    Article  ADS  Google Scholar 

  24. Shen, Y., Knoll, A. H. & Walter, M. R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Shen, Y., Canfield, D. E. & Knoll, A. H. Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia. Am. J. Sci. 302, 81–109 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Brennan, S. T., Lowenstein, T. K. & Horita, J. Seawater chemistry and the advent of biocalcification. Geology 32, 473–476 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–838 (1986)

    Article  ADS  CAS  Google Scholar 

  28. Grotzinger, J. P. Facies and evolution of Precambrian depositional systems: emergence of the modern platform archetype. SEPM Spec. Publ. 44, 79–106 (1989)

    Google Scholar 

  29. Berner, R. A. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta 65, 685–694 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Schlesinger, W. H. Biogeochemistry (Academic, San Diego, 1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF, the National Geographic Society, the Polar Continental Shelf Project (Natural Resources, Canada), and the University of Missouri Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Kah.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods

Provides a detailed description of procedures for extraction of CAS from carbonate rocks for isotopic analysis, as well as the analytical procedures used in isotopic determinations. (DOC 21 kb)

Supplementary Data

Provides tables of CAS data that, at the time of manuscript writing, were not otherwise available in a peer-reviewed publication format. This includes CAS data from the Society Cliffs Formation and Dismal Lakes Groups (this study), as well as used data from Gellatly and Gellatly & Lyons (M.S. thesis, currently accepted for publication in Geochimica et Cosmochimica Acta). (DOC 30 kb)

Supplementary Figures

Provides graphical representation of model sensitivities to total fractionation (ΔS), weathering rate (Fw) and deposition/accumulation rate (δS/dt) parameters. (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kah, L., Lyons, T. & Frank, T. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004). https://doi.org/10.1038/nature02974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02974

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing