Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization

Abstract

A relationship between convergent margin magmas and copper–gold ore mineralization has long been recognized1,2,3,4,5,6. The nature of the genetic link is controversial, particularly whether the link is due to high-oxygen-fugacity ( f O 2 ) melts and fluids released from subducted slabs5,6,7 or to brine exsolution during magmatic evolution4. For submarine, subduction-related volcanic glasses from the eastern Manus basin, Papua New Guinea, we here report abrupt decreases in gold and copper abundances, coupled with a switch in the behaviour of titanium and iron from concentration increases to decreases as SiO2 rises. We propose that the abrupt depletion in gold and copper results from concurrent sulphur reduction as a result of f O 2 buffering, causing enhanced formation of copper–gold hydrosulphide complexes that become scavenged from crystallizing melts into cogenetic magmatic aqueous fluids. This process is particularly efficient in oxidized arc magmas with substantial sulphate. We infer that subsequent migration and cooling of exsolved aqueous fluids create links between copper–gold mineralization and arc magmatism in the Manus basin8,9, and at convergent margins in general1,2,3,4,5,6.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected compositional characteristics of eastern Manus basin volcanic glasses.
Figure 2: Plot of Yb/Au against Yb showing the relative incompatibility of Au with Yb.

Similar content being viewed by others

References

  1. Richards, J. P. Petrology and geochemistry of alkaline intrusives at the Porgera gold deposit, Papua New Guinea. J. Geochem. Explor. 35, 141–199 (1990)

    Article  CAS  Google Scholar 

  2. Mueller, D. & Groves, D. I. Direct and indirect associations between potassic igneous rocks, shoshonites and gold–copper deposits. Ore Geol. Rev. 8, 383–406 (1993)

    Article  Google Scholar 

  3. Sillitoe, R. H. Characteristics and controls of the largest porphyry Cu–Au and epithermal Au deposits in the circum-Pacific region. Aust. J. Earth Sci. 44, 373–388 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Ulrich, T., Guether, D. & Heinrich, C. A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399, 676–679 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Mueller, D., Franz, L., Herzig, P. M. & Hunt, S. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea. Lithos 57, 163–186 (2001)

    Article  ADS  Google Scholar 

  6. Mungall, J. E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915–918 (2002)

    Article  ADS  CAS  Google Scholar 

  7. McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516 (1999)

    Article  CAS  Google Scholar 

  8. Binns, R. A. & Scott, S. D. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Econ. Geol. 88, 2226–2236 (1993)

    Article  Google Scholar 

  9. Shipboard Scientific Party. Leg 193 Summary. In Proceedings of the Ocean Drilling Program, Initial Reports (eds Binns, R. A., Barriga, F. J. A. S. & Miller, D. J.) 1–84 (Ocean Drilling Program, 2002)

    Google Scholar 

  10. Togashi, S. & Terashima, S. The behavior of gold in unaltered arc tholeiitic rocks from Izu-Oshima, Fuji, and Osoreyama volcanic areas, Japan. Geochim. Cosmochim. Acta 61, 543–554 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Keays, R. R. & Scott, R. B. Precious metals in ocean-ridge basalts; implications for basalts as source rocks for gold mineralization. Econ. Geol. 71, 705–720 (1976)

    Article  CAS  Google Scholar 

  12. Zentilli, M., Brooks, R. R., Helgason, J., Ryan, D. E. & Zhang, H. The distribution of Au in volcanic rocks of eastern Iceland. Chem. Geol. 48, 17–28 (1985)

    Article  ADS  CAS  Google Scholar 

  13. Moss, R., Scott, S. D. & Binns, R. A. Gold content of eastern Manus Basin volcanic rocks; implications for enrichment in associated hydrothermal precipitates. Econ. Geol. 96, 91–107 (2001)

    CAS  Google Scholar 

  14. Williams-Jones, A. E., Migdisov, A. A., Archibald, S. M. & Xiao, Z. Vapor-transport of ore metals. In Water-Rock Interaction, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar (eds Hellman, R. & Wood, S. A.) 279–305 (Spec. Publ. Vol. 7, Geochem. Soc., St Louis, 2002)

    Google Scholar 

  15. Loucks, R. R. & Mavrogenes, J. A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science 284, 2159–2163 (1999)

    Article  CAS  Google Scholar 

  16. Sun, W., Bennett, V. C., Eggins, S. M., Arculus, R. J. & Perfit, M. R. Rhenium systematics in submarine MORB and back-arc basin glasses: Laser ablation ICP-MS results. Chem. Geol. 196, 259–281 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Sun, W. D., Bennett, V. C., Eggins, S. M., Kamenetsky, V. S. & Arculus, R. J. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature 422, 294–297 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Sun, W. D., Arculus, R. J., Bennett, V. C., Eggins, S. M. & Binns, R. A. Evidence for rhenium enrichment in the mantle wedge from submarine arc volcanic glasses (Papua New Guinea). Geology 31, 845–848 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Kamenetsky, V. S. et al. Parental basaltic melts and fluids in eastern Manus backarc basin; implications for hydrothermal mineralisation. Earth Planet. Sci. Lett. 184, 685–702 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Kamenetsky, V. S. et al. Fluid bubbles in melt inclusions and pillow-rim glasses: high-temperature precursors to hydrothermal fluids? Chem. Geol. 183, 349–364 (2002)

    Article  ADS  CAS  Google Scholar 

  21. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Yang, K. & Scott, D. S. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383, 420–423 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Yang, K. H. & Scott, S. D. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus basin, western Pacific. Econ. Geol. 97, 1079–1100 (2002)

    Article  CAS  Google Scholar 

  24. Gibert, F., Pascal, M. L. & Pichavant, M. Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulphide complex of gold (AuHS0) at 350 to 450°C and 500 bars. Geochim. Cosmochim. Acta 62, 2931–2947 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Gammons, C. H. & Williams-Jones, A. E. Chemical mobility of gold in the porphyry-epithermal environment. Econ. Geol. 92, 45–59 (1997)

    Article  CAS  Google Scholar 

  26. Archibald, S. M., Migdisov, A. A. & Williams-Jones, A. E. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures. Geochim. Cosmochim. Acta 65, 4413–4423 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Phillips, G. N. & Evans, K. A. Role of CO2 in the formation of gold deposits. Nature 429, 860–863 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Kilinc, A., Carmichael, I. S. E., Rivers, M. L. & Sack, R. O. The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib. Mineral. Petrol. 83, 136–140 (1983)

    Article  ADS  CAS  Google Scholar 

  29. Carmichael, I. S. E. & Ghiorso, M. S. Oxidation–reduction relations in basic magma: a case for homogeneous equilibria. Earth Planet. Sci. Lett. 78, 200–210 (1986)

    Article  ADS  CAS  Google Scholar 

  30. Roberts, S. et al. Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin: the Sr and S isotope evidence. Geology 31, 805–808 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. M. Eggins, C. Allen and J. M. G. Shelley for technical support with the laser-ablation ICP-MS analyses; S.-S. Sun, A. W. Hofmann, J. E. Snow and S. J. Galer for discussions; and A. E. Williams-Jones for a review. This work was supported by a Alexander von Humboldt Research Fellowship to W.D.S. and by a Friedrich Wilhelm Bessel Award to V.S.K. R.J.A. was supported by the Australian Research Council, and R.A.B. by CSIRO and a mineral company consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Arculus.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Detailed information about samples from the eastern Manus Basin. (PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Arculus, R., Kamenetsky, V. et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431, 975–978 (2004). https://doi.org/10.1038/nature02972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02972

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing