Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Jarosite as an indicator of water-limited chemical weathering on Mars


The Mars Exploration Rover Opportunity identified the ferric sulphate mineral jarosite and possible relicts of gypsum at the Meridiani Planum landing site1. On Earth, jarosite has been found to form in acid mine drainage environments, during the oxidation of sulphide minerals2, and during alteration of volcanic rocks by acidic, sulphur-rich fluids near volcanic vents3. Jarosite formation is thus thought to require a wet, oxidizing and acidic environment. But jarosite on Earth only persists over geologically relevant time periods in arid environments because it rapidly decomposes to produce ferric oxyhydroxides in more humid climates4. Here we present equilibrium thermodynamic reaction-path simulations that constrain the range of possible conditions under which such aqueous alteration phases are likely to have formed on Mars. These calculations simulate the chemical weathering of basalt at relevant martian conditions. We conclude that the presence of jarosite combined with residual basalt at Meridiani Planum indicates that the alteration process did not proceed to completion, and that following jarosite formation, arid conditions must have prevailed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Predicted alteration minerals, reported as weight per cent of alteration assemblage at a water:rock ratio of 1:1.
Figure 2: Eh–pH phase diagram of the Fe-S-Ca-Na-HCO3-H2O system at 298 K.


  1. Morris, R. et al. A first look at the mineralogy and geochemistry of the MER-B landing site in Meridiani Planum. Lunar Planet. Sci. Conf. XXXV, abstract 2179 (2004)

  2. Herbert, R. Properties of goethite and jarosite precipitated from acidic groundwater, Darlarna, Sweden. Clays Clay Miner. 45, 261–273 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Fulignati, P., Sbrana, A., Luperini, W. & Greco, V. Formation of rock coatings induced by the acid fumarole plume of the passively degassing volcano of la Fossa (Volcano Island, Italy). J. Volcanol. Geotherm. Res. 115, 397–410 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Langmuir, D. Aqueous Environmental Geochemsitry (Prentice Hall, Upper Saddle River, New Jersey, 1996)

    Google Scholar 

  5. Gooding, J. Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus 99, 28–41 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Bridges, J. et al. Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Clark, B. & Van Hart, D. The salts of Mars. Icarus 45, 370–378 (1981)

    Article  ADS  CAS  Google Scholar 

  8. Wanke, H. et al. Chemical composition of rocks and soils at the Pathfinder site. Space Sci. Rev. 96, 317–330 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Clark, B. & Baird, A. Is the Martian lithosphere sulphur rich? J. Geophys. Res. 84, 8395–8403 (1979)

    Article  ADS  CAS  Google Scholar 

  10. Settle, M. Formation and deposition of volcanic sulphate aerosols on Mars. J. Geophys. Res. 84, 8343–8354 (1979)

    Article  ADS  CAS  Google Scholar 

  11. Banin, A., Han, F. X., Kan, I. & Cicelsky, A. Acidic volatiles and the Mars soil. J. Geophys. Res. 102, 13341–13356 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Catling, D. A chemical model for evaporites on early Mars: possible sedimentary tracers of the early climate and implications for exploration. J. Geophys. Res. 104, 16453–16469 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Farquhar, J., Saravino, J., Jackson, T. & Thiemens, M. Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites. Nature 404, 50–52 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Marion, G., Catling, D. & Kargel, J. Modelling aqueous ferrous iron chemistry at low temperatures with application to Mars. Geochim. Cosmochim. Acta 67, 4251–4266 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Clark, B. Geochemical components in Martian soil. Geochim. Cosmochim. Acta 57, 4575–4581 (1993)

    Article  ADS  CAS  Google Scholar 

  16. Gooding, J. Chemical weathering on Mars. Icarus 33, 483–513 (1978)

    Article  ADS  CAS  Google Scholar 

  17. Pollack, J., Kasting, J., Richardson, S. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987)

    Article  ADS  CAS  Google Scholar 

  18. Bethke, C. Geochemical Reaction Modelling: Concepts and Applications (Oxford Univ. Press, New York, 1996)

    Google Scholar 

  19. Rosenbauer, R., Bischoff, J. & Radtke, A. Hydrothermal alteration of graywacke and basalt by 4 molal NaCl. Econ. Geol. 78, 1701–1710 (1983)

    Article  CAS  Google Scholar 

  20. Owen, T. in Mars (eds Kieffer, H., Jakosky, B., Snyder, C. & Matthews, M.) 818–834 (Univ. Arizona Press, Tucson, 1992)

    Google Scholar 

  21. Linke, W. Solubilities of Inorganic and Metal Organic Compounds Vol. I, 3rd edn (Am. Chem. Soc., Washington DC, 1958)

    Google Scholar 

  22. Barth, C. The Photochemistry of Atmospheres 337–392 (Academic, New York, 1985)

    Book  Google Scholar 

  23. Hemley, J. J., Cygan, G. & d'Angelo, W. Effect of pressure on ore mineral solubilities under hydrothermal conditions. Geology 14, 377–379 (1986)

    Article  ADS  CAS  Google Scholar 

  24. Kraft, M., Michalski, J. & Sharp, T. Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy. Geophys. Res. Lett. 30, doi:10.1029/2003GL018848 (2003)

  25. Ziegler, K. et al. Halloysite as kinetically controlled end product of arid-zone basalt weathering. Chem. Geol. 202, 461–478 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Fieldes, M. & Claridge, G. in Soil Components Vol. 2 Inorganic ComponentsM (ed. Gieseking, J.) 351–393 (Springer, New York, 1975)

    Book  Google Scholar 

  27. Jakosky, B., Henderson, B. & Mellon, M. Chaotic obliquity and the nature of the martian climate. J. Geophys. Res. 100, 1579–1584 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Phillips, R. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Chyba, C., Owen, T. & Ip, W. in Hazards Due to Comets and Asteroids (ed. Gehrels, T.) 9–58 (Univ. Arizona Press, Tucson, 1994)

    Google Scholar 

  30. McSween, H. Jr & Keil, K. Mixing relationships in the Martian regolith and the composition of globally homogeneous dust. Geochim. Cosmochim. Acta 64, 2155–2166 (2000)

    Article  ADS  CAS  Google Scholar 

Download references


M.E.E.M. thanks J. Jerden for assistance in the early stages of the project and A. Madden for discussions. M.E.E.M. and R.J.B. thank H. McSween for comments on early interpretations. This project was partially funded by a grant to R.J.B. from the NSF.Authors' contributions M.E.E.M. conducted the modelling with advice from R.J.B. and J.D.R. Interpretations were a result of collaborations between M.E.E.M., R.J.B. and J.D.R. The manuscript was written by M.E.E.M. with input from R.J.B. and J.D.R.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. E. Elwood Madden.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elwood Madden, M., Bodnar, R. & Rimstidt, J. Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431, 821–823 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing