Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature ferromagnetic nanotubes controlled by electron or hole doping

Abstract

Nanotubes and nanowires with both elemental1,2 (carbon or silicon) and multi-element3,4,5 compositions (such as compound semiconductors or oxides), and exhibiting electronic properties ranging from metallic to semiconducting, are being extensively investigated for use in device structures designed to control electron charge6,7,8. However, another important degree of freedom—electron spin, the control of which underlies the operation of ‘spintronic’ devices9—has been much less explored. This is probably due to the relative paucity of nanometre-scale ferromagnetic building blocks10 (in which electron spins are naturally aligned) from which spin-polarized electrons can be injected. Here we describe nanotubes of vanadium oxide (VOx), formed by controllable self-assembly11, that are ferromagnetic at room temperature. The as-formed nanotubes are transformed from spin-frustrated semiconductors to ferromagnets by doping with either electrons or holes, potentially offering a route to spin control12 in nanotube-based heterostructures13.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Vanadium oxide nanotubes ‘self-assembled’ using dodecylamine as a structure-directing templating agent.
Figure 2: Magnetization of VOx nanotubes after hole and electron doping.
Figure 3: A schematic representation of Mott–Hubbard band splitting in VOx nanotubes and a simple unit-cell model of spin textures with and without charge doping.
Figure 4: Spin-gapped magnetic susceptibility of as-assembled VOx nanotubes, containing approximately one spin in each V(1), V(2), and V(3) site.

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  CAS  Article  Google Scholar 

  2. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire bulding blocks. Science 291, 851–853 (2001)

    ADS  CAS  Article  Google Scholar 

  3. Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    ADS  CAS  Article  Google Scholar 

  4. Rosenfeld-Hacohen, Y., Grunbaum, E., Tenne, R., Sloan, J. & Hutchison, J. L. Cage structures and nanotubes of NiCl2 . Nature 395, 336–337 (1998)

    ADS  Article  Google Scholar 

  5. Remskar, M. et al. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479–481 (2001)

    ADS  CAS  Article  Google Scholar 

  6. Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22–28 (1999)

    ADS  CAS  Article  Google Scholar 

  7. Fuhrer, M. S. et al. Crossed nanotube junctions. Science 288, 494–497 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Derycke, V., Martel, R., Appenzeller, J. & Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001)

    ADS  CAS  Article  Google Scholar 

  9. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    ADS  CAS  Article  Google Scholar 

  10. Hueso, L. & Mathur, N. Dreams of a hollow future. Nature 427, 301–303 (2004)

    ADS  CAS  Article  Google Scholar 

  11. Krumeich, F. et al. Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am Chem. Soc. 121, 8324–8331 (1999)

    CAS  Article  Google Scholar 

  12. Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Yao, Z., Postma, H. W. Ch., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)

    ADS  CAS  Article  Google Scholar 

  14. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    ADS  CAS  Article  Google Scholar 

  16. Levy, P., Leyva, A. G., Troiani, H. E. & Sánchez, R. D. Nanotubes of rare-earth manganese oxides. Appl. Phys. Lett. 83, 5247–5249 (2003)

    ADS  CAS  Article  Google Scholar 

  17. Zavalij, P. Y. & Whittingham, M. S. Structural chemistry of vanadium oxides with open frameworks. Acta Cryst. B 55, 627–663 (1999)

    CAS  Article  Google Scholar 

  18. Mott, N. F. Metal–Insulator Transitions (Taylor & Francis, London, 1974)

    Google Scholar 

  19. Kanada, M. et al. On the magnetic properties of systems with low dimensional linkage of VO5 pyramids. J. Phys. Soc. Jpn 67, 2904–2909 (1998)

    ADS  CAS  Article  Google Scholar 

  20. Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Yamauchi, T., Ueda, Y. & Mori, N. Pressure-induced superconductivity in β–Na0.33V2O5 beyond charge ordering. Phys. Rev. Lett. 89, 057002 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Pickett, W. E. Impact of structure on magnetic coupling in CaV4O9 . Phys. Rev. Lett. 92, 056402 (2004)

    Article  Google Scholar 

  23. Korotin, M. A. et al. Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7, and CaV4O9 . Phys. Rev. Lett. 83, 1387–1390 (1999)

    ADS  CAS  Article  Google Scholar 

  24. Lumsden, M. D., Sales, B. C., Mandrus, D., Nagler, S. E. & Thompson, J. R. Weak ferromagnetism and field-induced spin reorientation in K2V3O8 . Phys. Rev. Lett. 86, 159–162 (2001)

    ADS  CAS  Article  Google Scholar 

  25. Onoda, M. & Nishiguchi, N. Crystal structure and spin gap state of CaV2O5 . J. Solid-State Chem. 127, 359–362 (1996)

    ADS  CAS  Article  Google Scholar 

  26. Dobley, A. et al. Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry. Chem. Mater. 13, 4382–4386 (2001)

    CAS  Article  Google Scholar 

  27. Wang, X., Liu, L., Bontchev, R. & Jacobson, A. J. Electrochemical-hydrothermal synthesis and structure determination of a novel layered mixed-valence oxide: BaV7O16·nH2O. J. Chem. Soc. Chem. Commun. 1009–1010 (1998)

  28. Bergström, Ö., Gustasson, T. & Thomas, J. O. Electrochemically lithiated vanadium oxide, Li2V6O13 . Acta Cryst. C 53, 528–530 (1997)

    Article  Google Scholar 

  29. Bertotti, G. Hysteresis in Magnetism (Academic, London, 1998)

    Google Scholar 

  30. Cao, J. et al. Effect of sheet distance on the optical properties of vanadate nanotubes. Chem. Mater. 16, 731–736 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Afzali, K.-S. Cho, C. R. Kagan, F. X. Redl and S. Sun for technical advice, C. A. Feild for chemistry insights, P. Y. Zavalij for his expertise in crystal structures, B. Spivak and A. M. Tsvelik for discussions, and R. Ludeke for his contributions. This work is supported in part by the Defense Advanced Research Project Agency (DARPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Krusin-Elbaum.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Optical absorption spectrum of as-assembled VOx nanotubes: figure, figure caption and references (PDF 222 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krusin-Elbaum, L., Newns, D., Zeng, H. et al. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672–676 (2004). https://doi.org/10.1038/nature02970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02970

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing