Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A laser–plasma accelerator producing monoenergetic electron beams

Abstract

Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m-1, owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser–plasma accelerators1 have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain2,3,4,5 (>100 GeV m-1). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads2,3,4,5,6,7,8,9,10, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble11 that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Raw images obtained on the LANEX screen.
Figure 3: Experimental and simulated electron spectra.
Figure 4: 3D PIC simulation results.

References

  1. 1

    Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 337, 606–608 (1995)

    ADS  Article  Google Scholar 

  3. 3

    Umstadter, D., Chen, S.-Y., Maksimchuk, A., Mourou, G. & Wagner, R. Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons. Science 273, 472–475 (1996)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Moore, C. I. et al. Electron trapping in self-modulated laser wakefields by Raman backscatter. Phys. Rev. Lett. 79, 3909–3912 (1997)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Malka, V. et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Gahn, C. et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772–4775 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Malka, V. et al. Characterization of electron beams produced by ultrashort (30 fs) laser pulses. Phys. Plasmas 8, 2605–2608 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kitagawa, Y. et al. Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 48–51 (1992)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Everett, M. et al. Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368, 527–529 (1994)

    ADS  Article  Google Scholar 

  10. 10

    Amiranoff, F. et al. Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett. 81, 995–998 (1998)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Clayton, C. E., Joshi, C., Darrow, C. & Umstadter, D. Relativistic plasma-wave excitation by collinear optical mixing. Phys. Rev. Lett. 54, 2343–2346 (1985)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Amiranoff, F. et al. Observation of modulational instability in Nd-laser beat-wave experiments. Phys. Rev. Lett. 68, 3710–3713 (1992)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Andreev, N. E., Gorbunov, L. M., Kirsanov, V. I., Pogosova, A. A. & Ramazashvili, R. R. Resonant excitation of wakefields by a laser pulse in a plasma. JETP Lett. 55, 571–574 (1992)

    ADS  Google Scholar 

  15. 15

    Sprangle, P., Esarey, E., Krall, J. & Joyce, G. Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 2200–2203 (1992)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Antonsen, T. M. & Mora, P. Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 2204–2207 (1992)

    ADS  Article  Google Scholar 

  17. 17

    Leemans, W. P. et al. Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Pukhov, A., Sheng, Z.-M. & Meyer-ter-Vehn, J. Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 2847–2854 (1999)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)

    ADS  Article  Google Scholar 

  20. 20

    Pittman, M. et al. Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system. Appl. Phys. B 74, 529–535 (2002)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Pukhov, A. J. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61, 425–433 (1999)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the European Community Research Infrastructure Activity under the FP6 “Structuring the European Research Area” programme (CARE) and from the German Scientific Council (DFG).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Malka.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faure, J., Glinec, Y., Pukhov, A. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004). https://doi.org/10.1038/nature02963

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing