Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A relative signalling model for the formation of a topographic neural map

Abstract

The highly ordered wiring of retinal ganglion cell (RGC) neurons in the eye to their synaptic targets in the superior colliculus of the midbrain has long served as the dominant experimental system for the analysis of topographic neural maps1,2,3. Here we describe a quantitative model for the development of one arm of this map—the wiring of the nasal–temporal axis of the retina to the caudal–rostral axis of the superior colliculus. The model is based on RGC–RGC competition that is governed by comparisons of EphA receptor signalling intensity, which are made using ratios of, rather than absolute differences in, EphA signalling between RGCs4. Molecular genetic experiments, exploiting a combinatorial series of EphA receptor knock-in and knockout mice, confirm the salient predictions of the model, and show that it both describes and predicts topographic mapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EphA mRNAs in the retina.
Figure 2: EphA expression in the knock-ins.
Figure 3: Map perturbation in Isl2-EphA3ki/+EphA4+/- mice.
Figure 4: Rlrs functions and measured retinocollicular maps in all possible Isl2-EphA3/EphA4 compound genotypes.
Figure 5: RS derivation of the wild-type map.

Similar content being viewed by others

References

  1. Kaas, J. H. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44, 107–112 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fraser, S. E. & Hunt, R. K. Retinotectal specificity: models and experiments in search of a mapping function. Annu. Rev. Neurosci. 3, 319–352 (1980)

    Article  CAS  PubMed  Google Scholar 

  4. Brown, A. et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77–88 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. O'Leary, D. D. M., Yates, P. A. & McLaughlin, T. Molecular development of sensory maps: representing sights and smells in the brain. Cell 96, 255–269 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. McLaughlin, T., Hindges, R. & O'Leary, D. D. Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol. 13, 57–69 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular map. Neuron 25, 563–574 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Frisén, J. et al. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243 (1998)

    Article  PubMed  Google Scholar 

  10. Monschau, B. et al. Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J. 16, 1258–1267 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Connor, R. J., Menzel, P. & Pasquale, E. B. Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev. Biol. 193, 21–35 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Menzel, P., Valencia, F., Godement, P., Dodelet, V. C. & Pasquale, E. B. Ephrin-A6, a new ligand for EphA receptors in the developing visual system. Dev. Biol. 230, 74–88 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Nakamoto, M. et al. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86, 755–766 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Wahl, S., Barth, H., Ciossek, T., Aktories, K. & Mueller, B. K. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149, 263–270 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodhill, G. J. Mathematical guidance for axons. Trends Neurosci. 21, 226–231 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Park, S., Frisen, J. & Barbacid, M. Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein kinase receptors. EMBO J. 16, 3106–3114 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hindges, R., McLaughlin, T., Genoud, N., Henkemeyer, M. & O'Leary, D. D. EphB forward signaling controls directional branch extension and arborization required for dorsal–ventral retinotopic mapping. Neuron 35, 475–487 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, H. J., Nakamoto, M., Bergemann, A. D. & Flanagan, J. G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995)

    Article  CAS  PubMed  Google Scholar 

  19. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995)

    Article  CAS  PubMed  Google Scholar 

  20. Dottori, M. et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc. Natl Acad. Sci. USA 95, 13248–13253 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hornberger, M. R. et al. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–742 (1999)

    CAS  PubMed  Google Scholar 

  22. Yates, P. A., Roskies, A. L., McLaughlin, T. & O'Leary, D. D. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. J. Neurosci. 21, 8548–8563 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simon, D. K. & O'Leary, D. D. M. Development of topographic order in the mammalian retinocollicular projection. J. Neurosci. 12, 1212–1232 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685–696 (1987)

    CAS  PubMed  Google Scholar 

  25. Prestige, M. C. & Willshaw, D. J. On a role for competition in the formation of patterned neural connections. Proc. R. Soc. Lond. B 190, 77–98 (1975)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. McLaughlin, T., Torborg, C. L., Feller, M. B. & O'Leary, D. D. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147–1160 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Feldheim, D. A. et al. Topographic guidance labels in a sensory projection to the forebrain. Neuron 21, 1303–1313 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Cutforth, T. et al. Axonal ephrin-As and odorant receptors. Coordinate determination of the olfactory sensory map. Cell 114, 311–322 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Mui, S. H., Hindges, R., O'Leary, D. D., Lemke, G. & Bertuzzi, S. The homeodomain protein Vax2 patterns the dorsoventral and nasotemporal axes of the eye. Development 129, 797–804 (2002)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. F. Stevens for mathematical insights; M. Dottori and S. Pfaff for the EphA4 mutants and Isl2-τlacZ mice, respectively; D. O'Leary, T. McLaughlin and R. Hindges for discussions and advice on DiI injections; T. Jessell, C. Kintner, M. Meister, S. Pfaff and L. Wolpert for comments on the manuscript; and J. Hash for excellent technical assistance. This work was supported by grants from the NIH (G.L.), the Philippe Foundation (M.R.), and the Bettencourt–Schueller Foundation (M.R.). M.R. was a fellow from Fondation pour la Recherche Medicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Lemke.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1 and Discussion

This supplement elaborates on equations describing the EphA and ephrin-A gradients in the mouse, and discusses the assumption of EphA receptor interchangeability. (PDF 148 kb)

Supplementary Figure 2 and Discussion

This supplement describes the direct visualization of EphA3+ axons in heterozygous knock-ins using Isl2-tlacZ as an axonal marker, and its use in multiple compound mutant backgrounds. (PDF 5616 kb)

Supplementary Figure 3 and Discussion

This supplement describes a speculative model for how ensemble-wide ratiometric ∑EphA comparisons may be translated into biased competition for BDNF during axonal competition and map formation in the SC. (PDF 1200 kb)

Supplementary Discussion

This supplement discusses retinal expression of ephrin-As, and the implications of results described in the text for their hypothesized roles in retinocollicular mapping. (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reber, M., Burrola, P. & Lemke, G. A relative signalling model for the formation of a topographic neural map. Nature 431, 847–853 (2004). https://doi.org/10.1038/nature02957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02957

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing