Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface mechanics mediate pattern formation in the developing retina


Pattern formation of biological structures involves organizing different types of cells into a spatial configuration. In this study, we investigate the physical basis of biological patterning of the Drosophila retina in vivo. We demonstrate that E- and N-cadherins mediate apical adhesion between retina epithelial cells. Differential expression of N-cadherin within a sub-group of retinal cells (cone cells) causes them to form an overall shape that minimizes their surface contact with surrounding cells. The cells within this group, in both normal and experimentally manipulated conditions, pack together in the same way as soap bubbles do. The shaping of the cone cell group and packing of its components precisely imitate the physical tendency for surfaces to be minimized. Thus, simple patterned expression of N-cadherin results in a complex spatial pattern of cells owing to cellular surface mechanics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Pattern formation in different tissues.
Figure 2: Configuration of cone cells precisely correlates with soap bubble configurations.
Figure 3: DE- and DN-cadherins are required for apical adhesion of retinal cells.
Figure 4: DN-cadherin is required for cone cell patterning.
Figure 5: Misexpression of cadherins leads to patterning defects.


  1. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  2. Knox, A. L. & Brown, N. H. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295, 1285–1288 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Thompson, D. W. On Growth and Form (Cambridge Univ. Press, Cambridge, 1917)

    Google Scholar 

  4. Plateau, J. A. F. Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires (Gauthier-Villars, Paris, 1873)

    MATH  Google Scholar 

  5. Taylor, J. E. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103, 489–539 (1976)

    MathSciNet  Article  Google Scholar 

  6. Steinberg, M. S. Reconstruction of tissues by dissociated cells: some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. Steinberg, M. S. & Takeichi, M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl Acad. Sci. USA 91, 206–209 (1994)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Foty, R. A., Pfleger, C. M., Forgacs, G. & Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–1620 (1996)

    CAS  PubMed  Google Scholar 

  9. Davis, G. S., Phillips, H. M. & Steinberg, M. S. Germ-layer surface tensions and “tissue affinities” in Rana pipiens gastrulae: quantitative measurements. Dev. Biol. 192, 630–644 (1997)

    CAS  Article  PubMed  Google Scholar 

  10. Chichilnisky, E. J. A mathematical model of pattern formation. J. Theor. Biol. 123, 81–101 (1986)

    MathSciNet  CAS  Article  PubMed  Google Scholar 

  11. Ready, D. F., Hanson, T. E. & Benzer, S. Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53, 217–240 (1976)

    CAS  Article  PubMed  Google Scholar 

  12. Cagan, R. L. & Ready, D. F. The emergence of order in the Drosophila pupal retina. Dev. Biol. 136, 346–362 (1989)

    CAS  Article  PubMed  Google Scholar 

  13. Wolff, T. & Ready, D. F. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) 1277–1325 (Cold Spring Harbor, New York, 1993)

    Google Scholar 

  14. Strausfeld, N. J. & Nassel, D. R. in Handbook of Sensory Physiology (ed. Autrum, H.) 1–132 (Springer, Berlin, 1981)

    Google Scholar 

  15. Chanut, F. et al. Rough eye is a gain-of-function allele of amos that disrupts regulation of the proneural gene atonal during Drosophila retinal differentiation. Genetics 160, 623–635 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Renfranz, P. J. & Benzer, S. Monoclonal antibody probes discriminate early and late mutant defects in development of the Drosophila retina. Dev. Biol. 136, 411–429 (1989)

    CAS  Article  PubMed  Google Scholar 

  17. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35, 747–784 (2001)

    CAS  Article  PubMed  Google Scholar 

  18. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002)

    CAS  Article  PubMed  Google Scholar 

  19. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Dev. Biol. 165, 716–726 (1994)

    CAS  Article  PubMed  Google Scholar 

  20. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997)

    CAS  Article  PubMed  Google Scholar 

  21. Hynes, R. O. & Zhao, Q. The evolution of cell adhesion. J. Cell Biol. 150, 89F–96F (2000)

    Article  Google Scholar 

  22. Sanson, B., White, P. & Vincent, J. P. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383, 627–630 (1996)

    ADS  Article  PubMed  Google Scholar 

  23. Zhu, B. et al. Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys. J. 84, 4033–4042 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Duguay, D., Foty, R. A. & Steinberg, M. S. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323 (2003)

    CAS  Article  PubMed  Google Scholar 

  25. Bloor, J. W. & Kiehart, D. P. Drosophila RhoA regulates the cytoskeleton and cell-cell adhesion in the developing epidermis. Development 129, 3173–3183 (2002)

    CAS  PubMed  Google Scholar 

  26. Hayashi, T., Kojima, T. & Saigo, K. Specification of primary pigment cell and outer photoreceptor fates by BarH1 homeobox gene in the developing Drosophila eye. Dev. Biol. 200, 131–145 (1998)

    CAS  Article  PubMed  Google Scholar 

  27. Peifer, M., Pai, L. M. & Casey, M. Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev. Biol. 166, 543–556 (1994)

    CAS  Article  PubMed  Google Scholar 

  28. Thomas, G. H. et al. Drosophila β-heavy-spectrin is essential for development and contributes to specific cell fates in the eye. Development 125, 2125–2134 (1998)

    CAS  PubMed  Google Scholar 

  29. Blochlinger, K., Jan, L. Y. & Jan, Y. N. Postembryonic patterns of expression of cut, a locus regulating sensory organ identity in Drosophila. Development 117, 441–450 (1993)

    CAS  PubMed  Google Scholar 

  30. Higashijima, S. et al. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev. 6, 50–60 (1992)

    CAS  Article  PubMed  Google Scholar 

  31. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994)

    ADS  CAS  Article  PubMed  Google Scholar 

  32. Godt, D. & Tepass, U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

  33. Pignoni, F. & Zipursky, S. L. Induction of Drosophila eye development by decapentaplegic. Development 124, 271–278 (1997)

    CAS  PubMed  Google Scholar 

  34. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    CAS  Article  PubMed  Google Scholar 

  35. Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771 (1997)

    CAS  PubMed  Google Scholar 

  36. Newsome, T. P., Asling, B. & Dickson, B. J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000)

    CAS  PubMed  Google Scholar 

  37. Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989)

    CAS  Article  PubMed  Google Scholar 

  38. Vincent, J. P. & Lawrence, P. A. Drosophila wingless sustains engrailed expression only in adjoining cells: evidence from mosaic embryos. Cell 77, 909–915 (1994)

    CAS  Article  PubMed  Google Scholar 

  39. Oda, H. & Tsukita, S. Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev. Biol. 216, 406–422 (1999)

    CAS  Article  PubMed  Google Scholar 

  40. Morgan, T. H. Experimental Embryology (Columbia Univ. Press, New York, 1927)

    Book  Google Scholar 

Download references


We thank T. Uemura, H. Oda, U. Tepass, G. Thomas, B. Dickson, P. Garrity, the Bloomington Drosophila Stock Center and the Developmental Studies Hybridoma Bank for fly strains and/or antibodies. We also thank K. Saigo for use of facilities. We thank M. Steinberg and R. Matsuda for critical input. We acknowledge G. Beitel, A. Dudley, J. Widom and E. Sontheimer for greatly improving the manuscript. T.H. was supported by a research fellowship from the Japan Society for the Promotion of Science for Young Scientists. This work was also supported by the NIH.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Takashi Hayashi or Richard W. Carthew.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayashi, T., Carthew, R. Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–652 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing