Article | Published:

Direct integration of Hox and segmentation gene inputs during Drosophila development

Abstract

During Drosophila embryogenesis, segments, each with an anterior and posterior compartment, are generated by the segmentation genes while the Hox genes provide each segment with a unique identity. These two processes have been thought to occur independently. Here we show that abdominal Hox proteins work directly with two different segmentation proteins, Sloppy paired and Engrailed, to repress the Hox target gene Distalless in anterior and posterior compartments, respectively. These results suggest that segmentation proteins can function as Hox cofactors and reveal a previously unanticipated use of compartments for gene regulation by Hox proteins. Our results suggest that these two classes of proteins may collaborate to directly control gene expression at many downstream target genes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the wing disk of Drosophila. Nature New Biol. 245, 251–253 (1973)

  2. 2

    Morata, G. & Lawrence, P. A. Control of compartment development by the engrailed gene in Drosophila. Nature 255, 614–617 (1975)

  3. 3

    Fraser, S., Keynes, R. & Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435 (1990)

  4. 4

    Martínez-Arias, A. & Lawrence, P. A. Parasegments and compartments in the Drosophila embryo. Nature 313, 639–642 (1985)

  5. 5

    Irvine, K. D. & Rauskolb, C. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189–214 (2001)

  6. 6

    Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila?. Cell 85, 951–961 (1996)

  7. 7

    Fjose, A., McGinnis, W. J. & Gehring, W. J. Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313, 284–289 (1985)

  8. 8

    Kornberg, T., Siden, I., O'Farrell, P. & Simon, M. The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40, 45–53 (1985)

  9. 9

    Nasiadka, A., Dietrich, B. H. & Krause, H. M. Anterior–posterior patterning in the Drosophila embryo. Adv. Dev. Biol. Biochem. 12, 155–204 (2002)

  10. 10

    DiNardo, S., Heemskerk, J., Dougan, S. & O'Farrell, P. H. The making of a maggot: patterning the Drosophila embryonic epidermis. Curr. Opin. Genet. Dev. 4, 529–534 (1994)

  11. 11

    Sánchez-Herrero, E., Vernos, I., Marco, R. & Morata, G. Genetic organization of Drosophila bithorax complex. Nature 313, 108–113 (1985)

  12. 12

    Carroll, S. B., DiNardo, S., O'Farrell, P. H., White, R. A. & Scott, M. P. Temporal and spatial relationships between segmentation and homeotic gene expression in Drosophila embryos: distributions of the fushi tarazu, engrailed, Sex combs reduced, Antennapedia, and Ultrabithorax proteins. Genes Dev. 2, 350–360 (1988)

  13. 13

    McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283–302 (1992)

  14. 14

    Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978)

  15. 15

    Casanova, J., Sanchez-Herrero, E., Busturia, A. & Morata, G. Double and triple mutant combinations of the bithorax complex of Drosophila. EMBO J. 6, 3103–3109 (1987)

  16. 16

    Gibson, G. & Gehring, W. J. Head and thoracic transformation caused by ectopic expression of Antennapedia during Drosophila development. Development 102, 657–675 (1988)

  17. 17

    Mann, R. S. & Hogness, D. S. Functional dissection of Ultrabithorax proteins in D. melanogaster. Cell 60, 597–610 (1990)

  18. 18

    Gonzalez-Reyes, A. & Morata, G. The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products. Cell 61, 515–522 (1990)

  19. 19

    Cohen, S. M., Bronner, G., Kuttner, F., Jurgens, G. & Jackle, H. Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature 338, 432–434 (1989)

  20. 20

    Cohen, S. M. Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 343, 173–177 (1990)

  21. 21

    Mann, R. engrailed-mediated repression of Ultrabithorax is necessary for the parasegment 6 identity in Drosophila. Development 120, 3205–3212 (1994)

  22. 22

    Vachon, G. et al. Homeotic genes of the bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 71, 437–450 (1992)

  23. 23

    Gebelein, B., Culi, J., Ryoo, H. D., Zhang, W. & Mann, R. S. Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev. Cell 3, 487–498 (2002)

  24. 24

    Mann, R. S. & Carroll, S. B. Molecular mechanisms of selector gene function and evolution. Curr. Opin. Genet. Dev. 12, 592–600 (2002)

  25. 25

    Mann, R. S. & Morata, G. The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu. Rev. Cell Dev. Biol. 16, 243–271 (2000)

  26. 26

    Shen, W.-F. et al. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol. Cell. Biol. 17, 6448–6458 (1997)

  27. 27

    Cadigan, K. M., Grossniklaus, U. & Gehring, W. J. Functional redundancy: the respective roles of the two sloppy paired genes in Drosophila segmentation. Proc. Natl Acad. Sci. USA 91, 6324–6328 (1994)

  28. 28

    Grossniklaus, U., Pearson, R. K. & Gehring, W. J. The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev. 6, 1030–1051 (1992)

  29. 29

    Cadigan, K. M., Grossniklaus, U. & Gehring, W. J. Localized expression of sloppy paired protein maintains the polarity of Drosophila parasegments. Genes Dev. 8, 899–913 (1994)

  30. 30

    Andrioli, L. P., Vasisht, V., Theodosopoulou, E., Oberstein, A. & Small, S. Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms. Development 129, 4931–4940 (2002)

  31. 31

    Kobayashi, M., Goldstein, R. E., Fujioka, M., Paroush, Z. & Jaynes, J. B. Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries. Development 128, 1805–1815 (2001)

  32. 32

    Tolkunova, E. N., Fujioka, M., Kobayashi, M., Deka, D. & Jaynes, J. B. Two distinct types of repression domain in engrailed: one interacts with the groucho corepressor and is preferentially active on integrated target genes. Mol. Cell. Biol. 18, 2804–2814 (1998)

  33. 33

    Jimenez, G., Paroush, Z. & Ish-Horowicz, D. Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev. 11, 3072–3082 (1997)

  34. 34

    Struhl, G. Splitting the bithorax complex of Drosophila. Nature 308, 454–457 (1984)

  35. 35

    Dahmann, C. & Basler, K. Compartment boundaries: at the edge of development. Trends Genet. 15, 320–326 (1999)

  36. 36

    Ryoo, H. D. & Mann, R. S. The control of trunk Hox specificity and activity by Extradenticle. Genes Dev. 13, 1704–1716 (1999)

  37. 37

    Pöpperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell 81, 1031–1042 (1995)

  38. 38

    Ferretti, E. et al. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins. Development 127, 155–166 (2000)

  39. 39

    Grieder, N., Marty, T., Ryoo, H.-D., Mann, R. S. & Affolter, M. Synergistic activation of a Drosophila enhancer by HOM/EXD and DPP signaling. EMBO J. 16, 7402–7410 (1997)

  40. 40

    Rieckhof, G., Casares, F., Ryoo, H. D., Abu-Shaar, M. & Mann, R. S. Nuclear translocation of Extradenticle requires homothorax, which encodes an Extradenticle-related homeodomain protein. Cell 91, 171–183 (1997)

  41. 41

    Galant, R., Walsh, C. M. & Carroll, S. B. Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. Development 129, 3115–3126 (2002)

  42. 42

    Mann, R. & Abu-Shaar, M. Nuclear import of the homeodomain protein Extradenticle in response to Decapentaplegic and Wingless signalling. Nature 383, 630–633 (1996)

  43. 43

    Aspland, S. E. & White, R. A. Nucleocytoplasmic localisation of extradenticle protein is spatially regulated throughout development in Drosophila. Development 124, 741–747 (1997)

  44. 44

    Lohmann, I., McGinnis, N., Bodmer, M. & McGinnis, W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110, 457–466 (2002)

  45. 45

    Alexandre, C. & Vincent, J. P. Requirements for transcriptional repression and activation by Engrailed in Drosophila embryos. Development 130, 729–739 (2003)

  46. 46

    Karch, F., Bender, W. & Weiffenbach, B. abdA expression in Drosophila embryos. Genes Dev. 4, 1573–1587 (1990)

  47. 47

    Kosman, D., Small, S. & Reinitz, J. Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev. Genes Evol. 208, 290–294 (1998)

Download references

Acknowledgements

We thank K. Cadigan, J. Jaynes, H. Krause, J. Reinitz, C. Schwartz, S. Small, G. Struhl and the Developmental Studies Hybridoma Bank, University of Iowa, for reagents; W. Zhang for technical help; and R. Axel, J. Culi, J. Dasen, O. Hobert, T. Jessell, L. Johnston and G. Struhl for critically reading and commenting on the manuscript. This work was supported by an NIH grant to R.S.M.

Author information

Correspondence to Richard S. Mann.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1 (JPG 226 kb)

Supplementary Figure 2 (JPG 192 kb)

Supplementary Figure 3 (JPG 127 kb)

Supplementary Figure 1 Legend (DOC 21 kb)

Supplementary Figure 2 Legend (DOC 20 kb)

Supplementary Figure 3 Legend (DOC 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Compartment-specific repression mediated by the DMX-R.
Figure 2: Assembly of a core Hox/Exd/Hth/Hox complex on the DMX-R.
Figure 3: A model for DMX-R-mediated repression of Dll.
Figure 4: En and Slp bind to DMX-R.
Figure 5: Dll is repressed by Hox and segmentation gene inputs.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.