Direct integration of Hox and segmentation gene inputs during Drosophila development

Abstract

During Drosophila embryogenesis, segments, each with an anterior and posterior compartment, are generated by the segmentation genes while the Hox genes provide each segment with a unique identity. These two processes have been thought to occur independently. Here we show that abdominal Hox proteins work directly with two different segmentation proteins, Sloppy paired and Engrailed, to repress the Hox target gene Distalless in anterior and posterior compartments, respectively. These results suggest that segmentation proteins can function as Hox cofactors and reveal a previously unanticipated use of compartments for gene regulation by Hox proteins. Our results suggest that these two classes of proteins may collaborate to directly control gene expression at many downstream target genes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Compartment-specific repression mediated by the DMX-R.
Figure 2: Assembly of a core Hox/Exd/Hth/Hox complex on the DMX-R.
Figure 3: A model for DMX-R-mediated repression of Dll.
Figure 4: En and Slp bind to DMX-R.
Figure 5: Dll is repressed by Hox and segmentation gene inputs.

References

  1. 1

    Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the wing disk of Drosophila. Nature New Biol. 245, 251–253 (1973)

    CAS  Article  Google Scholar 

  2. 2

    Morata, G. & Lawrence, P. A. Control of compartment development by the engrailed gene in Drosophila. Nature 255, 614–617 (1975)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Fraser, S., Keynes, R. & Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435 (1990)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Martínez-Arias, A. & Lawrence, P. A. Parasegments and compartments in the Drosophila embryo. Nature 313, 639–642 (1985)

    ADS  Article  Google Scholar 

  5. 5

    Irvine, K. D. & Rauskolb, C. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189–214 (2001)

    CAS  Article  Google Scholar 

  6. 6

    Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila?. Cell 85, 951–961 (1996)

    CAS  Article  Google Scholar 

  7. 7

    Fjose, A., McGinnis, W. J. & Gehring, W. J. Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313, 284–289 (1985)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kornberg, T., Siden, I., O'Farrell, P. & Simon, M. The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40, 45–53 (1985)

    CAS  Article  Google Scholar 

  9. 9

    Nasiadka, A., Dietrich, B. H. & Krause, H. M. Anterior–posterior patterning in the Drosophila embryo. Adv. Dev. Biol. Biochem. 12, 155–204 (2002)

    CAS  Article  Google Scholar 

  10. 10

    DiNardo, S., Heemskerk, J., Dougan, S. & O'Farrell, P. H. The making of a maggot: patterning the Drosophila embryonic epidermis. Curr. Opin. Genet. Dev. 4, 529–534 (1994)

    CAS  Article  Google Scholar 

  11. 11

    Sánchez-Herrero, E., Vernos, I., Marco, R. & Morata, G. Genetic organization of Drosophila bithorax complex. Nature 313, 108–113 (1985)

    ADS  Article  Google Scholar 

  12. 12

    Carroll, S. B., DiNardo, S., O'Farrell, P. H., White, R. A. & Scott, M. P. Temporal and spatial relationships between segmentation and homeotic gene expression in Drosophila embryos: distributions of the fushi tarazu, engrailed, Sex combs reduced, Antennapedia, and Ultrabithorax proteins. Genes Dev. 2, 350–360 (1988)

    CAS  Article  Google Scholar 

  13. 13

    McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283–302 (1992)

    CAS  Article  Google Scholar 

  14. 14

    Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Casanova, J., Sanchez-Herrero, E., Busturia, A. & Morata, G. Double and triple mutant combinations of the bithorax complex of Drosophila. EMBO J. 6, 3103–3109 (1987)

    CAS  Article  Google Scholar 

  16. 16

    Gibson, G. & Gehring, W. J. Head and thoracic transformation caused by ectopic expression of Antennapedia during Drosophila development. Development 102, 657–675 (1988)

    Google Scholar 

  17. 17

    Mann, R. S. & Hogness, D. S. Functional dissection of Ultrabithorax proteins in D. melanogaster. Cell 60, 597–610 (1990)

    CAS  Article  Google Scholar 

  18. 18

    Gonzalez-Reyes, A. & Morata, G. The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products. Cell 61, 515–522 (1990)

    CAS  Article  Google Scholar 

  19. 19

    Cohen, S. M., Bronner, G., Kuttner, F., Jurgens, G. & Jackle, H. Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature 338, 432–434 (1989)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Cohen, S. M. Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 343, 173–177 (1990)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Mann, R. engrailed-mediated repression of Ultrabithorax is necessary for the parasegment 6 identity in Drosophila. Development 120, 3205–3212 (1994)

    CAS  PubMed  Google Scholar 

  22. 22

    Vachon, G. et al. Homeotic genes of the bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 71, 437–450 (1992)

    CAS  Article  Google Scholar 

  23. 23

    Gebelein, B., Culi, J., Ryoo, H. D., Zhang, W. & Mann, R. S. Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev. Cell 3, 487–498 (2002)

    CAS  Article  Google Scholar 

  24. 24

    Mann, R. S. & Carroll, S. B. Molecular mechanisms of selector gene function and evolution. Curr. Opin. Genet. Dev. 12, 592–600 (2002)

    CAS  Article  Google Scholar 

  25. 25

    Mann, R. S. & Morata, G. The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu. Rev. Cell Dev. Biol. 16, 243–271 (2000)

    CAS  Article  Google Scholar 

  26. 26

    Shen, W.-F. et al. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol. Cell. Biol. 17, 6448–6458 (1997)

    CAS  Article  Google Scholar 

  27. 27

    Cadigan, K. M., Grossniklaus, U. & Gehring, W. J. Functional redundancy: the respective roles of the two sloppy paired genes in Drosophila segmentation. Proc. Natl Acad. Sci. USA 91, 6324–6328 (1994)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Grossniklaus, U., Pearson, R. K. & Gehring, W. J. The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev. 6, 1030–1051 (1992)

    CAS  Article  Google Scholar 

  29. 29

    Cadigan, K. M., Grossniklaus, U. & Gehring, W. J. Localized expression of sloppy paired protein maintains the polarity of Drosophila parasegments. Genes Dev. 8, 899–913 (1994)

    CAS  Article  Google Scholar 

  30. 30

    Andrioli, L. P., Vasisht, V., Theodosopoulou, E., Oberstein, A. & Small, S. Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms. Development 129, 4931–4940 (2002)

    CAS  PubMed  Google Scholar 

  31. 31

    Kobayashi, M., Goldstein, R. E., Fujioka, M., Paroush, Z. & Jaynes, J. B. Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries. Development 128, 1805–1815 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Tolkunova, E. N., Fujioka, M., Kobayashi, M., Deka, D. & Jaynes, J. B. Two distinct types of repression domain in engrailed: one interacts with the groucho corepressor and is preferentially active on integrated target genes. Mol. Cell. Biol. 18, 2804–2814 (1998)

    CAS  Article  Google Scholar 

  33. 33

    Jimenez, G., Paroush, Z. & Ish-Horowicz, D. Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev. 11, 3072–3082 (1997)

    CAS  Article  Google Scholar 

  34. 34

    Struhl, G. Splitting the bithorax complex of Drosophila. Nature 308, 454–457 (1984)

    ADS  Article  Google Scholar 

  35. 35

    Dahmann, C. & Basler, K. Compartment boundaries: at the edge of development. Trends Genet. 15, 320–326 (1999)

    CAS  Article  Google Scholar 

  36. 36

    Ryoo, H. D. & Mann, R. S. The control of trunk Hox specificity and activity by Extradenticle. Genes Dev. 13, 1704–1716 (1999)

    CAS  Article  Google Scholar 

  37. 37

    Pöpperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell 81, 1031–1042 (1995)

    Article  Google Scholar 

  38. 38

    Ferretti, E. et al. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins. Development 127, 155–166 (2000)

    CAS  PubMed  Google Scholar 

  39. 39

    Grieder, N., Marty, T., Ryoo, H.-D., Mann, R. S. & Affolter, M. Synergistic activation of a Drosophila enhancer by HOM/EXD and DPP signaling. EMBO J. 16, 7402–7410 (1997)

    CAS  Article  Google Scholar 

  40. 40

    Rieckhof, G., Casares, F., Ryoo, H. D., Abu-Shaar, M. & Mann, R. S. Nuclear translocation of Extradenticle requires homothorax, which encodes an Extradenticle-related homeodomain protein. Cell 91, 171–183 (1997)

    CAS  Article  Google Scholar 

  41. 41

    Galant, R., Walsh, C. M. & Carroll, S. B. Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. Development 129, 3115–3126 (2002)

    CAS  PubMed  Google Scholar 

  42. 42

    Mann, R. & Abu-Shaar, M. Nuclear import of the homeodomain protein Extradenticle in response to Decapentaplegic and Wingless signalling. Nature 383, 630–633 (1996)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Aspland, S. E. & White, R. A. Nucleocytoplasmic localisation of extradenticle protein is spatially regulated throughout development in Drosophila. Development 124, 741–747 (1997)

    CAS  PubMed  Google Scholar 

  44. 44

    Lohmann, I., McGinnis, N., Bodmer, M. & McGinnis, W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110, 457–466 (2002)

    CAS  Article  Google Scholar 

  45. 45

    Alexandre, C. & Vincent, J. P. Requirements for transcriptional repression and activation by Engrailed in Drosophila embryos. Development 130, 729–739 (2003)

    CAS  Article  Google Scholar 

  46. 46

    Karch, F., Bender, W. & Weiffenbach, B. abdA expression in Drosophila embryos. Genes Dev. 4, 1573–1587 (1990)

    CAS  Article  Google Scholar 

  47. 47

    Kosman, D., Small, S. & Reinitz, J. Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev. Genes Evol. 208, 290–294 (1998)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Cadigan, J. Jaynes, H. Krause, J. Reinitz, C. Schwartz, S. Small, G. Struhl and the Developmental Studies Hybridoma Bank, University of Iowa, for reagents; W. Zhang for technical help; and R. Axel, J. Culi, J. Dasen, O. Hobert, T. Jessell, L. Johnston and G. Struhl for critically reading and commenting on the manuscript. This work was supported by an NIH grant to R.S.M.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard S. Mann.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gebelein, B., McKay, D. & Mann, R. Direct integration of Hox and segmentation gene inputs during Drosophila development. Nature 431, 653–659 (2004). https://doi.org/10.1038/nature02946

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing