Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic trapping of rare-earth atoms at millikelvin temperatures


The ability to create quantum degenerate gases has led to the realization of Bose–Einstein condensation of molecules1,2,3,4, atom–atom entanglement5 and the accurate measurement of the Casimir force in atom–surface interactions6. With a few exceptions7,8,9, the achievement of quantum degeneracy relies on evaporative cooling of magnetically trapped atoms to ultracold temperatures. Magnetic traps confine atoms whose electronic magnetic moments are aligned anti-parallel to the magnetic field. This alignment must be preserved during the collisional thermalization of the atomic cloud. Quantum degeneracy has been reached in spherically symmetric, S-state atoms (atoms with zero internal orbital angular momentum). However, collisional relaxation of the atomic magnetic moments of non-S-state atoms (non-spherical atoms with non-zero internal orbital angular momentum) is thought to proceed rapidly. Here we demonstrate magnetic trapping of non-S-state rare-earth atoms, observing a suppression of the interaction anisotropy in collisions. The atoms behave effectively like S-state atoms because their unpaired electrons are shielded by two outer filled electronic shells that are spherically symmetric. Our results are promising for the creation of quantum degenerate gases with non-S-state atoms, and may facilitate the search for time variation of fundamental constants10,11,12 and the development of a quantum computer with highly magnetic atoms13.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The experimental cell.
Figure 2: Time progression of trapping.
Figure 3: One-body decay of trapped Ho atoms owing to collisionally induced Zeeman relaxation.
Figure 4: Trapped Dy spectrum following the removal of the 4He buffer gas.


  1. Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose-Einstein condensate. Science 287, 1016–1019 (2002)

    ADS  Article  Google Scholar 

  2. Donley, E. A., Claussen, N. R., Thompson, S. T. & Wieman, C. E. Atom-molecule coherence in a Bose-Einstein condensate. Nature 417, 529–533 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. Jochim, S. et al. Bose-Einstein condensation of molecules. Science 302, 2101–2103 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  5. Widera, A. et al. Entanglement interferometry for precision measurement of atomic scattering properties. Phys. Rev. Lett. 92, 160406 (2004)

    ADS  Article  PubMed  Google Scholar 

  6. Lin, Y.-J., Teper, I., Chin, C. & Vuletic, V. Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004)

    ADS  Article  PubMed  Google Scholar 

  7. Barrett, M. D., Sauer, J. A. & Chapman, M. S. All-optical formation of an atomic Bose-Einstein condensate. Phys. Rev. Lett. 87, 010404 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Granade, S. R., Gehm, M. E., O'Hara, K. M. & Thomas, J. E. All-optical production of a degenerate Fermi gas. Phys. Rev. Lett. 88, 120405 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. Takasu, Y. et al. Spin-singlet Bose-Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91, 040404 (2003)

    ADS  Article  PubMed  Google Scholar 

  10. Nguyen, A. T., Budker, D., Lamoreaux, S. K. & Torgerson, J. R. Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dysprosium. Phys. Rev. A 69, 022105 (2004)

    ADS  Article  Google Scholar 

  11. Dzuba, V. A., Flambaum, V. V. & Marchenko, M. V. Relativistic effects in Sr, Dy, YbII, and YbIII and search for variation of the fine-structure constant. Phys. Rev. A 68, 022506 (2003)

    ADS  Article  Google Scholar 

  12. Dzuba, V. A., Flambaum, V. V. & Webb, J. K. Space-time variation of physical constants and relativistic corrections in atoms. Phys. Rev. Lett. 82, 888–891 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Derevianko, A. & Cannon, C. C. Quantum computing with magnetically interacting atoms. Preprint at 〈〉 (2004).

  14. Krems, R. V., Groenenboom, G. C. & Dalgarno, A. Electronic interaction anisotropy between atoms in arbitrary angular momentum states. J. Phys. Chem. A (in the press)

  15. Krems, R. V. & Dalgarno, A. Disalignment transitions in cold collisions of 3P atoms with structureless targets in a magnetic field. Phys. Rev. A 68, 013406 (2003)

    ADS  Article  Google Scholar 

  16. Kokoouline, V., Santra, R. & Greene, C. H. Multichannel cold collisions between metastable Sr atoms. Phys. Rev. Lett. 90, 253201 (2003)

    ADS  Article  PubMed  Google Scholar 

  17. Schmidt, P. O. et al. Continuous loading of cold atoms into a Ioffe-Pritchard magnetic trap. J. Opt. B 5, S170–S177 (2003)

    CAS  Article  Google Scholar 

  18. Xu, X., Loftus, T. H., Hall, J. L., Gallagher, A. & Ye, J. Cooling and trapping of atomic strontium. J. Opt. Soc. Am. B 20, 968–976 (2003)

    ADS  CAS  Article  Google Scholar 

  19. Nagel, S. B. et al. Magnetic trapping of metastable 3P2 atomic strontium. Phys. Rev. A 67, 011401 (2003)

    ADS  Article  Google Scholar 

  20. Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. in Atomic Physics 17 (eds Arimondo, E., DeNatale, P. & Inguscio, M.) 382–396 (AIP, Melville, New York, 2001)

    Google Scholar 

  21. Hansen, D. P., Mohr, J. R. & Hemmerich, A. Magnetic trapping of metastable calcium atoms. Phys. Rev. A 67, 21401 (2003)

    ADS  Article  Google Scholar 

  22. Kim, J. et al. Buffer-gas loading and magnetic trapping of atomic europium. Phys. Rev. Lett. 78, 3665–3668 (1997)

    ADS  CAS  Article  Google Scholar 

  23. Hasted, J. B. Physics of Atomic Collisions 2nd edn, Ch. 1, 19–45 (American Elsevier, New York, 1972)

    Google Scholar 

  24. deCarvalho, R. et al. Buffer-gas loaded magnetic traps for atoms and molecules: A primer. Eur. Phys. J. D 7, 289–309 (1999)

    ADS  CAS  Article  Google Scholar 

  25. Harris, J. G. E., Michniak, R. A., Nguyen, S. V., Ketterle, W. & Doyle, J. M. Buffer gas cooling and trapping of atoms with small magnetic moments. Europhys. Lett. (in the press)

Download references


We thank R. Krems for discussions and for assistance in preparing the manuscript. This material is based on work supported by the National Science Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to John M. Doyle.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hancox, C., Doret, S., Hummon, M. et al. Magnetic trapping of rare-earth atoms at millikelvin temperatures. Nature 431, 281–284 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing