Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A supernova origin for dust in a high-redshift quasar

Abstract

Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules1, by triggering the formation of the first low-mass stars2, and by absorbing stellar ultraviolet–optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars3. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars4,5 at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies6,7,8, corroborated by observations of nearby supernova remnants9,10,11, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrum of the quasar SDSS1048 + 46 at redshift 6.2, compared with quasar templates at lower redshift.
Figure 2: Extinction curve observed in the quasar SDSS1048 + 46 at z = 6.2 compared with the extinction curve observed in quasars at z < 4 and with the extinction curve expected from supernova dust.

References

  1. Hirashita, H. & Ferrara, A. Effects of dust grains on early galaxy evolution. Mon. Not. R. Astron. Soc. 337, 921–937 (2002)

    Article  ADS  Google Scholar 

  2. Schneider, R., Ferrara, A., Salvaterra, R., Omukai, K. & Bromm, V. Low-mass relics of early star formation. Nature 422, 869–871 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Whittet, D. C. B. Dust in the Galactic Environment (Series in Astronomy & Astrophysics, Institute of Physics (IOP) Publishing, Bristol, 2003)

    Google Scholar 

  4. Bertoldi, F. et al. Dust emission from the most distant quasars. Astron. Astrophys. 406, L55–L58 (2003)

    Article  ADS  Google Scholar 

  5. Priddey, R. S., Isaak, K. G., McMahon, R. G., Robson, E. I. & Pearson, C. P. Quasars as probes of the submillimetre cosmos at z &gt; 5. I. Preliminary SCUBA photometry. Mon. Not. R. Astron. Soc. 344, L74–L78 (2003)

    Article  ADS  Google Scholar 

  6. Todini, P. & Ferrara, A. Dust formation in primordial Type II supernovae. Mon. Not. R. Astron. Soc. 325, 726–736 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Nozawa, T., Kozasa, T., Umeda, H., Maeda, K. & Nomoto, K. Dust in the early Universe: dust formation in the ejecta of population III supernovae. Astrophys. J. 598, 785–803 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Schneider, R., Ferrara, A. & Salvaterra, R. Dust formation in very massive primordial supernovae. Mon. Not. R. Astron. Soc. 351, 1379–1386 (2004)

  9. Moseley, S. H., Dwek, E., Glaccum, W., Graham, J. R. & Lowenstein, R. F. Far-infrared observations of thermal dust emission from supernova 1987A. Nature 340, 697–699 (1989)

    Article  ADS  CAS  Google Scholar 

  10. Dunne, L., Eales, S., Ivison, R., Morgan, H. & Edmunds, M. Type II supernovae as a significant source of interstellar dust. Nature 424, 285–287 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Morgan, H. L., Dunne, L., Eales, S. A., Ivison, R. J. & Edmunds, M. G. Cold dust in Kepler's supernova remnant. Astrophys. J. 597, L33–L36 (2003)

    Article  ADS  Google Scholar 

  12. Richards, G. T. et al. Red and reddened quasars in the Sloan Digital Sky Survey. Astron. J. 126, 1131–1147 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Reichard, T. A. et al. Continuum and emission-line properties of broad absorption line quasars. Astron. J. 126, 2594–2607 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Hopkins, P. et al. Astrophys. J. (in the press); preprint at 〈http://arXiv.org/astro-ph/0406293〉 (2004).

  15. Gaskell, C. M., Goosmann, R. W., Antonucci, R. R. J. & Whysong, D. H. The nuclear reddening curve for active galactic nuclei and the shape of the infra-red to X-ray spectral energy distribution. Astrophys. J. (submitted); preprint at 〈http://arXiv.org/astro-ph/0309595〉 (2003).

  16. Maiolino, R. et al. Dust in active nuclei. I. Evidence for “anomalous” properties. Astron. Astrophys. 365, 28–36 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Maiolino, R. et al. Extreme gas properties in the most distant quasars. Astron. Astrophys. 420, 889–897 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Baffa, C. et al. NICS: The TNG Near Infrared Camera Spectrometer. Astron. Astrophys. 378, 722–728 (2001)

    Article  ADS  Google Scholar 

  19. Maiolino, R., Juarez, Y., Mujica, R., Nagar, N. & Oliva, E. Early star formation traced by the highest-redshift quasars. Astrophys. J. 596, L155–L158 (2003)

    Article  ADS  Google Scholar 

  20. Hirashita, H., Hunt, L. K. & Ferrara, A. Dust and hydrogen molecules in the extremely metal-poor dwarf galaxy SBS 0335-052. Mon. Not. R. Astron. Soc. 330, L19–L23 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. 101, 181–235 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Larson, R. B. Early star formation and the evolution of the stellar initial mass function in galaxies. Mon. Not. R. Astron. Soc. 301, 569–581 (1998)

    Article  ADS  Google Scholar 

  23. Zubko, V. G., Mennella, V., Colangeli, L. & Bussoletti, E. Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids. Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Scott, A. & Duley, W. W. Ultraviolet and infrared refractive indices of amorphous silicates. Astrophys. J. Suppl. 105, 401–405 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Mukai, T. in Evolution of Interstellar Dust and Related Topics (eds Bonetti, A., Greenberg, J. M. & Aiello, S.) 397–446 (Elsevier Science, New York, 1989)

    Google Scholar 

Download references

Acknowledgements

All authors have contributed equally to this paper. We thank J. Brucato for providing the optical constant of ACAR grains and we thank M. Walmsley for comments. This work was partially supported by the Italian Ministry of Research (MIUR) and by the National Institute for Astrophysics (INAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Maiolino.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiolino, R., Schneider, R., Oliva, E. et al. A supernova origin for dust in a high-redshift quasar. Nature 431, 533–535 (2004). https://doi.org/10.1038/nature02930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02930

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing