Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs

Abstract

Biodegradation of crude oil in subsurface petroleum reservoirs is an important alteration process with major economic consequences1. Aerobic degradation of petroleum hydrocarbons at the surface is well documented2 and it has long been thought that the flow of oxygen- and nutrient-bearing meteoric waters into reservoirs was necessary for in-reservoir petroleum biodegradation3. The occurrence of biodegraded oils in reservoirs where aerobic conditions are unlikely4, together with the identification of several anaerobic microorganisms in oil fields5 and the discovery of anaerobic hydrocarbon biodegradation mechanisms6,7, suggests that anaerobic degradation processes could also be responsible. The extent of anaerobic hydrocarbon degradation processes in the world's deep petroleum reservoirs, however, remains strongly contested. Moreover, no organism has yet been isolated that has been shown to degrade hydrocarbons under the conditions found in deep petroleum reservoirs8. Here we report the isolation of metabolites indicative of anaerobic hydrocarbon degradation from a large fraction of 77 degraded oil samples from both marine and lacustrine sources from around the world, including the volumetrically important Canadian tar sands. Our results therefore suggest that anaerobic hydrocarbon degradation is a common process in biodegraded subsurface oil reservoirs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Part of a proposed reductive pathway for the anaerobic degradation of naphthalene, 2-methylnaphthalene and tetralin by sulphate-reducing bacteria23.
Figure 2: GC-MS data for the methylated acid fraction of a degraded oil.

Similar content being viewed by others

References

  1. Connan, J. in Advances in Petroleum Geochemistry (eds Brooks, J. & Welte, D. H.) Vol. 1, 299–335 (Academic, London, 1984)

    Book  Google Scholar 

  2. Atlas, R. M. & Bartha, R. Hydrocarbon biodegradation and oil-spill remediation. Adv. Microb. Ecol. 12, 287–338 (1992)

    Article  CAS  Google Scholar 

  3. Palmer, S. E. in Organic Geochemistry (eds Macko, S. A. & Engel, M. H.) 511–534 (Plenum, New York, 1993)

    Book  Google Scholar 

  4. Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Magot, M., Ollivier, B. & Patel, B. K. C. Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 77, 103–116 (2000)

    Article  CAS  Google Scholar 

  6. Boll, M., Fuchs, G. & Heider, J. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr. Opin. Chem. Biol. 6, 604–611 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Widdel, F. & Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12, 259–276 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Röling, W. F. M., Head, I. M. & Larter, S. R. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res. Microbiol. 154, 321–328 (2003)

    Article  PubMed  Google Scholar 

  9. Evans, C. R., Rogers, M. A. & Bailey, N. J. L. Evolution and alteration of petroleum in Western Canada. Chem. Geol. 8, 147–170 (1971)

    Article  ADS  CAS  Google Scholar 

  10. Horstad, I., Larter, S. R. & Mills, N. A quantitative model of biological petroleum degradation within the Brent Group reservoir in the Gullfaks field, Norwegian North Sea. Org. Geochem. 19, 107–117 (1992)

    Article  CAS  Google Scholar 

  11. Larter, S. R. et al. The controls on the composition of biodegraded oils in the deep subsurface. Part 1: biodegradation rates in petroleum reservoirs. Org. Geochem. 34, 601–613 (2003)

    Article  CAS  Google Scholar 

  12. Bastin, E. S. The presence of sulphate reducing bacteria in oil field waters. Science 63, 21–24 (1926)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kartsev, A. A., Tabasaranskii, Z. A., Subbota, M. I. & Mogilevski, G. A. Geochemical Methods of Prospecting and Exploration for Petroleum and Natural Gas (English translation edited by Witherspoon, P. A. & Romey, W. D.) (Univ. California Press, Berkeley, California, 1959)

    Google Scholar 

  14. Zengler, K., Richnow, H. H., Rosselló-Mora, R., Michaelis, W. & Widdel, F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266–269 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Rueter, P. et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulfate-reducing bacteria. Nature 372, 455–458 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Magot, M., Connan, J. & Crolet, J.-L. Les bactéries des gisements pétroliers. La Recherche 25(268), 936–937 (1994)

    Google Scholar 

  17. Bennett, P. C., Siegel, D. E., Baedecker, M. J. & Hult, M. F. Crude oil in a shallow sand and gravel aquifer. I. Hydrogeology and inorganic geochemistry. Appl. Geochem. 8, 529–549 (1993)

    Article  CAS  Google Scholar 

  18. L'Haridon, S., Reysenbach, A.-L., Glénat, P., Prieur, D. & Jeanthon, C. Hot subterranean biosphere in a continental oil reservoir. Nature 377, 223–224 (1995)

    Article  ADS  CAS  Google Scholar 

  19. Elshahed, M. J., Gieg, L. M., McInerey, M. J. & Suflita, J. M Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ. Sci. Technol. 35, 682–689 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Rios-Hernandez, L. A., Gieg, L. M. & Suflita, J. M. Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl. Environ. Microbiol. 69, 434–443 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gieg, L. M. & Suflita, J. M. Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ. Sci. Technol. 36, 3755–3762 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Zhang, X., Sullivan, E. R. & Young, L. Y. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11, 117–124 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Annweiler, E., Michaelis, W. & Meckenstock, R. U. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl. Environ. Microbiol. 68, 852–858 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phelps, C. D., Battistelli, J. & Young, L. Y. Metabolic biomarkers for monitoring anaerobic naphthalene biodegradation in situ. Environ. Microbiol. 4, 532–537 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Peters, K. E. & Moldowan, J. M. The Biomarker Guide (Prentice Hall, New York, 1993)

    Google Scholar 

  26. Aitken, C. M. . Identification of Non-Hydrocarbon Metabolites of Deep Subsurface Anaerobic Petroleum Hydrocarbon Biodegradation PhD thesis, Univ. Newcastle-upon-Tyne, UK (2004)

    Google Scholar 

  27. Watson, J. S. . Hydrocarbon and Carboxylic Acid Compositions of Crude Oil Biodegraded in Marine Systems PhD thesis, Univ. Newcastle-upon-Tyne, UK (1999)

    Google Scholar 

  28. Van der Linden, A. C. & Thijsse, G. J. E. The mechanisms of microbial oxidations of petroleum hydrocarbons. Adv. Enzymol. 27, 469–546 (1965)

    PubMed  Google Scholar 

  29. Seewald, J. S. Organic-inorganic interactions in petroleum–producing sedimentary basins. Nature 426, 327–333 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Jones, D. M., Watson, J. S., Meredith, W., Chen, M. & Bennett, B. Determination of naphthenic acids in crude oils using non-aqueous ion exchange solid-phase extraction. Anal. Chem. 73, 703–707 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Head, B. Bennett and H. Huang for comments and supporting data, and also the members of the BACCHUS biodegradation consortium for support, discussions and permission to publish. BACCHUS members include Norsk Hydro, Shell, Enterprise, Petrobras, TotalFinaElf, Exxon Mobil, JNOC, ConocoPhillips, BP Amoco and ChevronTexaco. We also thank H. Wilkes for discussions and the gift of succinate standards. We acknowledge support from the Natural Environment Research Council for research funds, including JREI awards and S.R.L. acknowledges additional support from NSERC and AIF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Jones.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Molecular structures and GC-MS ion fragmentation patterns for the methyl esters of 2-naphthoic acid and reduced 2-naphthoic acid metabolites. (PPT 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitken, C., Jones, D. & Larter, S. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431, 291–294 (2004). https://doi.org/10.1038/nature02922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02922

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing