Abstract
Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3). These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications. Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV). Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance. The results open the way for compact and tunable high-brightness sources of electrons and radiation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995)
Malka, V. et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002)
Leemans, W. P. et al. Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802 (2002)
Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)
Esarey, E., Sprangle, P., Krall, J. & Ting, A. Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252–288 (1996)
Esarey, E., Krall, J. & Sprangle, P. Envelope analysis of intense laser pulse self-modulation in plasmas. Phys. Rev. Lett. 72, 2887–2890 (1994)
Esarey, E., Sprangle, P., Krall, J. & Ting, A. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quant. Electron. 33, 1879–1914 (1997)
Najmudin, Z. et al. Self-modulated wakefield and forced laser wakefield acceleration of electrons. Phys. Plasmas 10, 2071–2077 (2003)
Leemans, W. P. et al. Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 2510–2516 (2001)
Leemans, W. P. et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802 (2003)
Catravas, P., Esarey, E. & Leemans, W. P. Femtosecond x-rays from Thomson scattering using laser wakefield accelerators. Meas. Sci. Technol. 12, 1828–1834 (2001)
Wang, X. J., Qiu, X. & Ben-Zvi, I. Experimental observation of high-brightness microbunching in a photocathode RF electron gun. Phys. Rev. E 54, R3121–R3124 (1996)
Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering — A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996)
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 2200–2203 (1992)
Leemans, W. P. et al. Plasma guiding and wakefield generation for second-generation experiments. IEEE Trans. Plasma Sci. 24, 331–342 (1996)
Umstadter, D., Kim, J. K. & Dodd, E. Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073–2076 (1996)
Esarey, E., Hubbard, R. F., Leemans, W. P., Ting, A. & Sprangle, P. Electron injection into plasma wake fields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997)
Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412 (1993)
Volfbeyn, P., Esarey, E. & Leemans, W. P. Guiding of laser pulses in plasma channels created by the ignitor-heater technique. Phys. Plasmas 6, 2269–2277 (1999)
Kim, K. Y., Alexeev, I., Fan, J., Parra, E. & Milchberg, H. M. Plasma waveguides: Addition of end funnels and generation in clustered gases. AIP Conf. Proc. 647, 646–653 (2002)
Gaul, E. W. et al. Production and characterization of a fully ionized He plasma channel. Appl. Phys. Lett. 77, 4112–4114 (2000)
Toth, C. et al. Powerful, pulsed, THz radiation from laser accelerated relativistic electron bunches. Proc. SPIE 5448, 491–504 (2004)
Leemans, W. P. et al. Laser-driven plasma-based accelerators — Wakefield excitation, channel guiding, and laser triggered particle injection. Phys. Plasmas 5, 1615–1623 (1998)
Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)
Leemans, W. P. et al. Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 5, 2899–2906 (2004)
Nieter, C. & Cary, J. R. VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448–473 (2004)
Katsouleas, T., Wilks, S., Chen, S., Dawson, J. M. & Su, J. J. Beam loading in plasma accelerators. Part. Accel. 22, 81–99 (1987)
Reitsma, A. J. W. et al. Simulation of electron postacceleration in a two-stage laser wakefield accelerator. Phys. Rev. ST Accel. Beams 5, 051301 (2002)
Tsung, F. S. et al. Near GeV energy laser wakefield acceleration of self-injected electrons in a cm scale plasma channel. Phys. Rev. Lett. submitted
Saes, M. et al. A setup for ultrafast time-resolved x-ray absorption spectroscopy. Rev. Sci. Instrum. 75, 24–30 (2004)
Acknowledgements
This work was supported by the US Department of Energy and the National Science Foundation and used resources of the National Energy Research Scientific Computing Center at LBNL; C.G. was also supported by the Hertz Foundation. C.G. acknowledges his faculty advisor J. Wurtele. We appreciate contributions from G. Dugan, J. Faure, G. Fubiani, B. Nagler, K. Nakamura, N. Saleh, B. Shadwick, L. Archambault, M. Dickinson, S. Dimaggio, D. Syversrud, J. Wallig and N. Ybarrolaza.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Geddes, C., Toth, C., van Tilborg, J. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004). https://doi.org/10.1038/nature02900
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature02900
This article is cited by
-
Shaped liquid drops generate MeV temperature electron beams with millijoule class laser
Communications Physics (2024)
-
Electro-optic 3D snapshot of a laser wakefield accelerated kilo-ampere electron bunch
Light: Science & Applications (2024)
-
Non-linear QED approach for betatron radiation in a laser wakefield accelerator
Scientific Reports (2024)
-
Femtosecond electron microscopy of relativistic electron bunches
Light: Science & Applications (2023)
-
Absorption-induced transmission in plasma microphotonics
Nature Communications (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.