Letter | Published:

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding

Naturevolume 431pages538541 (2004) | Download Citation

Subjects

Abstract

Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3). These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications. Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV). Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance. The results open the way for compact and tunable high-brightness sources of electrons and radiation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995)

  2. 2

    Malka, V. et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002)

  3. 3

    Leemans, W. P. et al. Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802 (2002)

  4. 4

    Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

  5. 5

    Esarey, E., Sprangle, P., Krall, J. & Ting, A. Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252–288 (1996)

  6. 6

    Esarey, E., Krall, J. & Sprangle, P. Envelope analysis of intense laser pulse self-modulation in plasmas. Phys. Rev. Lett. 72, 2887–2890 (1994)

  7. 7

    Esarey, E., Sprangle, P., Krall, J. & Ting, A. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quant. Electron. 33, 1879–1914 (1997)

  8. 8

    Najmudin, Z. et al. Self-modulated wakefield and forced laser wakefield acceleration of electrons. Phys. Plasmas 10, 2071–2077 (2003)

  9. 9

    Leemans, W. P. et al. Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 2510–2516 (2001)

  10. 10

    Leemans, W. P. et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802 (2003)

  11. 11

    Catravas, P., Esarey, E. & Leemans, W. P. Femtosecond x-rays from Thomson scattering using laser wakefield accelerators. Meas. Sci. Technol. 12, 1828–1834 (2001)

  12. 12

    Wang, X. J., Qiu, X. & Ben-Zvi, I. Experimental observation of high-brightness microbunching in a photocathode RF electron gun. Phys. Rev. E 54, R3121–R3124 (1996)

  13. 13

    Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering — A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996)

  14. 14

    Sprangle, P., Esarey, E., Krall, J. & Joyce, G. Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 2200–2203 (1992)

  15. 15

    Leemans, W. P. et al. Plasma guiding and wakefield generation for second-generation experiments. IEEE Trans. Plasma Sci. 24, 331–342 (1996)

  16. 16

    Umstadter, D., Kim, J. K. & Dodd, E. Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073–2076 (1996)

  17. 17

    Esarey, E., Hubbard, R. F., Leemans, W. P., Ting, A. & Sprangle, P. Electron injection into plasma wake fields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997)

  18. 18

    Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412 (1993)

  19. 19

    Volfbeyn, P., Esarey, E. & Leemans, W. P. Guiding of laser pulses in plasma channels created by the ignitor-heater technique. Phys. Plasmas 6, 2269–2277 (1999)

  20. 20

    Kim, K. Y., Alexeev, I., Fan, J., Parra, E. & Milchberg, H. M. Plasma waveguides: Addition of end funnels and generation in clustered gases. AIP Conf. Proc. 647, 646–653 (2002)

  21. 21

    Gaul, E. W. et al. Production and characterization of a fully ionized He plasma channel. Appl. Phys. Lett. 77, 4112–4114 (2000)

  22. 22

    Toth, C. et al. Powerful, pulsed, THz radiation from laser accelerated relativistic electron bunches. Proc. SPIE 5448, 491–504 (2004)

  23. 23

    Leemans, W. P. et al. Laser-driven plasma-based accelerators — Wakefield excitation, channel guiding, and laser triggered particle injection. Phys. Plasmas 5, 1615–1623 (1998)

  24. 24

    Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)

  25. 25

    Leemans, W. P. et al. Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 5, 2899–2906 (2004)

  26. 26

    Nieter, C. & Cary, J. R. VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448–473 (2004)

  27. 27

    Katsouleas, T., Wilks, S., Chen, S., Dawson, J. M. & Su, J. J. Beam loading in plasma accelerators. Part. Accel. 22, 81–99 (1987)

  28. 28

    Reitsma, A. J. W. et al. Simulation of electron postacceleration in a two-stage laser wakefield accelerator. Phys. Rev. ST Accel. Beams 5, 051301 (2002)

  29. 29

    Tsung, F. S. et al. Near GeV energy laser wakefield acceleration of self-injected electrons in a cm scale plasma channel. Phys. Rev. Lett. submitted

  30. 30

    Saes, M. et al. A setup for ultrafast time-resolved x-ray absorption spectroscopy. Rev. Sci. Instrum. 75, 24–30 (2004)

Download references

Acknowledgements

This work was supported by the US Department of Energy and the National Science Foundation and used resources of the National Energy Research Scientific Computing Center at LBNL; C.G. was also supported by the Hertz Foundation. C.G. acknowledges his faculty advisor J. Wurtele. We appreciate contributions from G. Dugan, J. Faure, G. Fubiani, B. Nagler, K. Nakamura, N. Saleh, B. Shadwick, L. Archambault, M. Dickinson, S. Dimaggio, D. Syversrud, J. Wallig and N. Ybarrolaza.

Author information

Affiliations

  1. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA

    • C. G. R. Geddes
    • , Cs. Toth
    • , J. van Tilborg
    • , E. Esarey
    • , C. B. Schroeder
    •  & W. P. Leemans
  2. University of California, Berkeley, California, 94720, USA

    • C. G. R. Geddes
  3. Technische Universiteit Eindhoven, Postbus 513, 5600 MB, Eindhoven, the Netherlands

    • J. van Tilborg
  4. Tech-X Corporation, 5621 Arapahoe Ave. Suite A, Boulder, Colorado, 80303, USA

    • D. Bruhwiler
    • , C. Nieter
    •  & J. Cary
  5. University of Colorado, Boulder, Colorado, 80309, USA

    • J. Cary

Authors

  1. Search for C. G. R. Geddes in:

  2. Search for Cs. Toth in:

  3. Search for J. van Tilborg in:

  4. Search for E. Esarey in:

  5. Search for C. B. Schroeder in:

  6. Search for D. Bruhwiler in:

  7. Search for C. Nieter in:

  8. Search for J. Cary in:

  9. Search for W. P. Leemans in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to W. P. Leemans.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature02900

Further reading

  • Gamma-ray emission from wakefield-accelerated electrons wiggling in a laser field

    • Jie Feng
    • , Yifei Li
    • , Jinguang Wang
    • , Dazhang Li
    • , Fang Li
    • , Wenchao Yan
    • , Weimin Wang
    •  & Liming Chen

    Scientific Reports (2019)

  • Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures

    • A. E. Hussein
    • , N. Senabulya
    • , Y. Ma
    • , M. J. V. Streeter
    • , B. Kettle
    • , S. J. D. Dann
    • , F. Albert
    • , N. Bourgeois
    • , S. Cipiccia
    • , J. M. Cole
    • , O. Finlay
    • , E. Gerstmayr
    • , I. Gallardo González
    • , A. Higginbotham
    • , D. A. Jaroszynski
    • , K. Falk
    • , K. Krushelnick
    • , N. Lemos
    • , N. C. Lopes
    • , C. Lumsdon
    • , O. Lundh
    • , S. P. D. Mangles
    • , Z. Najmudin
    • , P. P. Rajeev
    • , C. M. Schlepütz
    • , M. Shahzad
    • , M. Smid
    • , R. Spesyvtsev
    • , D. R. Symes
    • , G. Vieux
    • , L. Willingale
    • , J. C. Wood
    • , A. J. Shahani
    •  & A. G. R. Thomas

    Scientific Reports (2019)

  • All optical dual stage laser wakefield acceleration driven by two-color laser pulses

    • Vishwa Bandhu Pathak
    • , Hyung Taek Kim
    • , J. Vieira
    • , L. O. Silva
    •  & Chang Hee Nam

    Scientific Reports (2018)

  • Control of laser plasma accelerated electrons for light sources

    • T. André
    • , I. A. Andriyash
    • , A. Loulergue
    • , M. Labat
    • , E. Roussel
    • , A. Ghaith
    • , M. Khojoyan
    • , C. Thaury
    • , M. Valléau
    • , F. Briquez
    • , F. Marteau
    • , K. Tavakoli
    • , P. N’Gotta
    • , Y. Dietrich
    • , G. Lambert
    • , V. Malka
    • , C. Benabderrahmane
    • , J. Vétéran
    • , L. Chapuis
    • , T. El Ajjouri
    • , M. Sebdaoui
    • , N. Hubert
    • , O. Marcouillé
    • , P. Berteaud
    • , N. Leclercq
    • , M. El Ajjouri
    • , P. Rommeluère
    • , F. Bouvet
    • , J. -P. Duval
    • , C. Kitegi
    • , F. Blache
    • , B. Mahieu
    • , S. Corde
    • , J. Gautier
    • , K. Ta Phuoc
    • , J. P. Goddet
    • , A. Lestrade
    • , C. Herbeaux
    • , C. Évain
    • , C. Szwaj
    • , S. Bielawski
    • , A. Tafzi
    • , P. Rousseau
    • , S. Smartsev
    • , F. Polack
    • , D. Dennetière
    • , C. Bourassin-Bouchet
    • , C. De Oliveira
    •  & M.-E. Couprie

    Nature Communications (2018)

  • Spatiotemporal control of laser intensity

    • Dustin H. Froula
    • , David Turnbull
    • , Andrew S. Davies
    • , Terrance J. Kessler
    • , Dan Haberberger
    • , John P. Palastro
    • , Seung-Whan Bahk
    • , Ildar A. Begishev
    • , Robert Boni
    • , Sara Bucht
    • , Joseph Katz
    •  & Jessica L. Shaw

    Nature Photonics (2018)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.