Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of the acrosomal bundle


In the unactivated Limulus sperm, a 60-µm-long bundle of actin filaments crosslinked by the protein scruin is bent and twisted into a coil around the base of the nucleus. At fertilization, the bundle uncoils and fully extends in five seconds to support a finger of membrane known as the acrosomal process. This biological spring is powered by stored elastic energy and does not require the action of motor proteins or actin polymerization1. In a 9.5-Å electron cryomicroscopic structure of the extended bundle, we show that twist, tilt and rotation of actin–scruin subunits deviate widely from a ‘standard’ F-actin filament. This variability in structural organization allows filaments to pack into a highly ordered and rigid bundle in the extended state and suggests a mechanism for storing and releasing energy between coiled and extended states without disassembly.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Acrosomal bundle reconstruction.
Figure 2: Averaged actin.
Figure 3: Actin filament distortion.
Figure 4: Averaged scruin.


  1. Tilney, L. G. Actin filaments in the acrosomal reaction of Limulus sperm. J. Cell Biol. 64, 289–310 (1975)

    CAS  Article  Google Scholar 

  2. Schmid, M. F., Jakana, J., Matsudaira, P. & Chiu, W. Imaging frozen, hydrated acrosomal bundle from Limulus sperm at 7 Å resolution with a 400 kV electron cryomicroscope. J. Mol. Biol. 230, 384–386 (1993)

    CAS  Article  Google Scholar 

  3. DeRosier, D., Tilney, L. & Flicker, P. A change in the twist of the actin-containing filaments occurs during the extension of the acrosomal process in Limulus sperm. J. Mol. Biol. 137, 375–389 (1980)

    CAS  Article  Google Scholar 

  4. Shin, J. H., Mahadevan, L., So, P. T. & Matsudaira, P. Bending stiffness of a crystalline actin bundle. J. Mol. Biol. 337, 255–261 (2004)

    CAS  Article  Google Scholar 

  5. Shin, J. H., Mahadevan, L., Waller, G. S., Langsetmo, K. & Matsudaira, P. Stored elastic energy powers the 60-microm extension of the Limulus polyphemus sperm actin bundle. J. Cell Biol. 162, 1183–1188 (2003)

    CAS  Article  Google Scholar 

  6. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Sherman, M. B. et al. The three-dimensional structure of the Limulus acrosomal process: a dynamic actin bundle. J. Mol. Biol. 294, 139–149 (1999)

    CAS  Article  Google Scholar 

  8. Schmid, M. F. Cross-correlation and merging of crystallographic reflections derived from cryoelectron micrographs of 3D crystals: application to the Limulus acrosomal bundle. J. Struct. Biol. 144, 195–208 (2003)

    CAS  Article  Google Scholar 

  9. Schmid, M. F., Agris, J. M., Jakana, J., Matsudaira, P. & Chiu, W. Three-dimensional structure of a single filament in the Limulus acrosomal bundle: scruin binds to homologous helix–loop–beta motifs in actin. J. Cell Biol. 124, 341–350 (1994)

    CAS  Article  Google Scholar 

  10. Galkin, V. E. et al. The location of ubiquitin in Lethocerus arthrin. J. Mol. Biol. 325, 623–628 (2003)

    CAS  Article  Google Scholar 

  11. Galkin, V. E. et al. The bacterial protein SipA polymerizes G-actin and mimics muscle nebulin. Nature Struct. Biol. 9, 518–521 (2002)

    CAS  PubMed  Google Scholar 

  12. Galkin, V. E. et al. The utrophin actin-binding domain binds F-actin in two different modes: implications for the spectrin superfamily of proteins. J. Cell Biol. 157, 243–251 (2002)

    Article  Google Scholar 

  13. Orlova, A. et al. Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics. J. Mol. Biol. 312, 95–106 (2001)

    CAS  Article  Google Scholar 

  14. Galkin, V. E., Orlova, A., Lukoyanova, N., Wriggers, W. & Egelman, E. H. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J. Cell Biol. 153, 75–86 (2001)

    CAS  Article  Google Scholar 

  15. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781 (1997)

    CAS  Article  Google Scholar 

  16. Jiang, W., Baker, M. L., Ludtke, S. J. & Chiu, W. Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308, 1033–1044 (2001)

    CAS  Article  Google Scholar 

  17. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990)

    ADS  CAS  Article  Google Scholar 

  18. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990)

    ADS  CAS  Article  Google Scholar 

  19. Dominguez, R. & Graceffa, P. Solution properties of TMR-actin: when biochemical and crystal data agree. Biophys. J. 85, 2073–2074 (2003)

    CAS  Article  Google Scholar 

  20. Graceffa, P. & Dominguez, R. Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics. J. Biol. Chem. 278, 34172–34180 (2003)

    CAS  Article  Google Scholar 

  21. Sablin, E. P. et al. How does ATP hydrolysis control actin's associations? Proc. Natl Acad. Sci. USA 99, 10945–10947 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Holmes, K. C., Angert, I., Kull, F. J., Jahn, W. & Schroder, R. R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425, 423–427 (2003)

    ADS  CAS  Article  Google Scholar 

  23. Borovikov, Y. S. et al. Fluorescence depolarization of actin filaments in reconstructed myofibers: the effect of S1 or pPDM-S1 on movements of distinct areas of actin. Biophys. J. 86, 3020–3029 (2004)

    ADS  CAS  Article  Google Scholar 

  24. Otterbein, L. R., Graceffa, P. & Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708–711 (2001)

    CAS  Article  Google Scholar 

  25. Egelman, E. H. Actin allostery again? Nature Struct. Biol. 8, 735–736 (2001)

    CAS  Article  Google Scholar 

  26. Egelman, E. H., Francis, N. & DeRosier, D. J. F-actin is a helix with a random variable twist. Nature 298, 131–135 (1982)

    ADS  CAS  Article  Google Scholar 

  27. Way, M., Sanders, M., Garcia, C., Sakai, J. & Matsudaira, P. Sequence and domain organization of scruin, an actin-cross-linking protein in the acrosomal process of Limulus sperm. J. Cell Biol. 128, 51–60 (1995)

    CAS  Article  Google Scholar 

  28. Bullitt, E. S., DeRosier, D. J., Coluccio, L. M. & Tilney, L. G. Three-dimensional reconstruction of an actin bundle. J. Cell Biol. 107, 597–611 (1988)

    CAS  Article  Google Scholar 

  29. Sanders, M., Way, M., Sakai, J. & Matsudaira, P. Characterization of the actin crosslinking properties of the scruin-calmodulin complex from the acrosomal process of Limulus sperm. J. Biol. Chem. 271, 2651–2657 (1996)

    CAS  Article  Google Scholar 

  30. Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95–100 (2000)

    ADS  CAS  Article  Google Scholar 

Download references


This research is supported by the NCRR and NIGMS of NIH. We thank M. Baker for assistance in the helixhunter and foldhunter searches, and M. Dougherty for advice on graphical display.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wah Chiu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary figure 1

Bundle Packing (DOC 441 kb)

Supplementary figure 2

Actin coordinates expressed as density (DOC 426 kb)

Supplementary movie

Transformation between the F-actin structure and the actin found in the bundle (MP4 2455 kb)

Figure legends (DOC 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmid, M., Sherman, M., Matsudaira, P. et al. Structure of the acrosomal bundle. Nature 431, 104–107 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing