Genetic evidence supports demic diffusion of Han culture


The spread of culture and language in human populations is explained by two alternative models: the demic diffusion model, which involves mass movement of people; and the cultural diffusion model, which refers to cultural impact between populations and involves limited genetic exchange between them1. The mechanism of the peopling of Europe has long been debated, a key issue being whether the diffusion of agriculture and language from the Near East was concomitant with a large movement of farmers1,2,3. Here we show, by systematically analysing Y-chromosome and mitochondrial DNA variation in Han populations, that the pattern of the southward expansion of Han culture is consistent with the demic diffusion model, and that males played a larger role than females in this expansion. The Han people, who all share the same culture and language, exceed 1.16 billion (2000 census), and are by far the largest ethnic group in the world. The expansion process of Han culture is thus of great interest to researchers in many fields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geographic distribution of sampled populations.
Figure 2: Principal component plot.


  1. 1

    Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, 1994)

    Google Scholar 

  2. 2

    Sokal, R., Oden, N. L. & Wilson, C. Genetic evidence for the spread of agriculture in Europe by demic diffusion. Nature 351, 143–145 (1991)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. 3

    Chikhi, L. et al. Y genetic data support the Neolithic demic diffusion model. Proc. Natl Acad. Sci. USA 99, 11008–11013 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Fei, X. T. The Pattern of Diversity in Unity of the Chinese Nation (Central Univ. for Nationalities Press, Beijing, 1999)

    Google Scholar 

  5. 5

    Ge, J. X., Wu, S. D. & Chao, S. J. Zhongguo yimin shi (The Migration History of China) (Fujian People's Publishing House, Fuzhou, China, 1997)

    Google Scholar 

  6. 6

    Zhao, T. M. & Lee, T. D. Gm and Km allotypes in 74 Chinese populations: a hypothesis of the origin of the Chinese nation. Hum. Genet. 83, 101–110 (1989)

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Du, R. F., Xiao, C. J. & Cavalli-Sforza, L. L. Genetic distances calculated on gene frequencies of 38 loci. Sci. China 40, 613 (1997)

    CAS  Article  Google Scholar 

  8. 8

    Chu, J. Y. et al. Genetic relationship of populations in China. Proc. Natl Acad. Sci. USA 95, 11763–11768 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Xiao, C. J. et al. Principal component analysis of gene frequencies of Chinese populations. Sci. China 43, 472–481 (2000)

    Google Scholar 

  10. 10

    Xu, Y. T. A brief study on the origin of Han nationality. J. Centr. Univ. Natl 30, 59–64 (2003)

    Google Scholar 

  11. 11

    Su, B. et al. Y chromosome haplotypes reveal prehistorical migrations to the Himalayas. Hum. Genet. 107, 582–590 (2000)

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Yao, Y. G. et al. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am. J. Hum. Genet. 70, 635–651 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Cavalli-Sforza, L. L. & Feldman, M. W. The application of molecular genetic approaches to the study of human evolution. Nature Genet. 33, 266–275 (2003)

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Wallace, D. C., Brown, M. D. & Lott, M. T. Nucleotide mitochondrial DNA variation in human evolution and disease. Gene 238, 211–230 (1999)

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Underhill, P. A. et al. Y chromosome sequence variation and the history of human populations. Nature Genet. 26, 358–361 (2000)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Jobling, M. A. & Tyler-Smith, C. The human Y chromosome: an evolutionary marker comes of age. Nature Rev. Genet. 4, 598–612 (2003)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Su, B. et al. Y-chromosome evidence for a northward migration of modern humans into eastern Asia during the last ice age. Am. J. Hum. Genet. 65, 1718–1724 (1999)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kivisild, T. et al. The emerging limbs and twigs of the East Asian mtDNA tree. Mol. Biol. Evol. 19, 1737–1751 (2002)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Roberts, D. F. & Hiorns, R. W. Methods of analysis of the genetic composition of a hybrid population. Hum. Biol. 37, 38–43 (1965)

    CAS  PubMed  Google Scholar 

  20. 20

    Bertorelle, G. & Excoffier, L. Inferring admixture proportions from molecular data. Mol. Biol. Evol. 15, 1298–1311 (1998)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Wang, J. Maximum-likelihood estimation of admixture proportions from genetic data. Genetics 164, 747–765 (2003)

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Wen, B. et al. Analyses of genetic structure of Tibeto-Burman populations revealed a gender-biased admixture in southern Tibeto-Burmans. Am. J. Hum. Genet. 74, 856–865 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Jin, L. & Su, B. Natives or immigrants: modern human origin in East Asia. Nature Rev. Genet. 1, 126–133 (2000)

    CAS  Article  PubMed  Google Scholar 

  24. 24

    The Y Chromosome Consortium, A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res. 12, 339–348 (2002)

    Article  Google Scholar 

  25. 25

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Schneider, S., et al. Arlequin: Ver. 2.000. A software for population genetic analysis. (Genetics and Biometry Laboratory, Univ. of Geneva, Geneva, 2000)

  27. 27

    Dupanloup, I. & Bertorelle, G. Inferring admixture proportions from molecular data: extension to any number of parental populations. Mol. Biol. Evol. 18, 672–675 (2001)

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Chakraborty, R. Gene admixture in human populations: Models and predictions. Yb. Phys. Anthropol. 29, 1–43 (1986)

    Article  Google Scholar 

  29. 29

    Sans, M. et al. Unequal contributions of male and female gene pools from parental populations in the African descendants of the city of Melo, Uruguay. Am. J. Phys. Anthropol. 118, 33–44 (2002)

    Article  PubMed  Google Scholar 

Download references


We thank all of the donors for making this work possible. The data collection was supported by NSFC and STCSM to Fudan and a NSF grant to L.J. L.J., R.D. and R.C. are supported by NIH.

Author information



Corresponding author

Correspondence to Li Jin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

This table provides the general information of the Han populations studied, including the names of population, locations, sample sizes and references. (DOC 69 kb)

Supplementary Table 2

This table gives the Y chromosome haplogroup distribution in the Han populations. (DOC 78 kb)

Supplementary Table 3

This table gives the mtDNA haplogroup distribution in the Han populations. (DOC 123 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wen, B., Li, H., Lu, D. et al. Genetic evidence supports demic diffusion of Han culture. Nature 431, 302–305 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing