Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA silencing in plants

Abstract

There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Recovery in tobacco plants infected with tobacco ringspot virus.
Figure 2: Validation of miRNA targets.
Figure 3: The action of RDR proteins in the initiation or amplification of silencing.
Figure 4: A silencing signal is affected by an RDR mutation.
Figure 5: Feedback mechanisms in RNA silencing.

References

  1. Wingard, S. A. Hosts and symptoms of ring spot, a virus disease of plants. J. Agric. Res. 37, 127–153 (1928).

    Google Scholar 

  2. Ratcliff, F., Harrison, B. D. & Baulcombe, D. C. A similarity between viral defense and gene silencing in plants. Science 276, 1558–1560 (1997).

    CAS  Article  PubMed  Google Scholar 

  3. Covey, S. N., Al-Kaff, N. S., Langara, A. & Turner, D. S. Plants combat infection by gene silencing. Nature 385, 781–782 (1997).

    ADS  CAS  Article  Google Scholar 

  4. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  Article  PubMed  Google Scholar 

  5. Bartel, D. P., MicroRNAs: genomics biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell 76, 567–576 (1994).

    CAS  Article  PubMed  Google Scholar 

  7. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194–5201 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Jones, L., Ratcliff, F. & Baulcombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 11, 747–757 (2001).

    CAS  Article  PubMed  Google Scholar 

  9. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  10. Volpe, T. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  11. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drososphila Argonaute2 PAZ domain. Nature 426, 465–469 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    CAS  Article  PubMed  Google Scholar 

  13. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science published online 29 July 2004 (doi:10.11261/science.1102513).

  14. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D. P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Taverna, S. D., Coyne, R. S. & Allis, D. C. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110, 701–711 (2002).

    CAS  Article  PubMed  Google Scholar 

  17. Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110, 689–699 (2002).

    CAS  Article  PubMed  Google Scholar 

  18. Hunter, C., Sun, H. & Poethig, R. S. The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr. Biol. 13, 1734–1739 (2003).

    CAS  Article  PubMed  Google Scholar 

  19. Fagard, M., Boutet, S., Morel, J.-B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA 97, 11650–11654 (2000).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Boutet, S. et al. Arabidopsis HEN1: A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr. Biol. 13, 843–848 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Schauer, S. E., Jacobsen, S. E., Meinke, D. W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    CAS  Article  PubMed  Google Scholar 

  22. Papp, I. et al. Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol. 132, 1382–1390 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Finnegan, E. J., Margis, R. & Waterhouse, P. M. Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, a homolog of Dicer-1 from Drosophila. Curr. Biol. 13, 236–240 (2003).

    CAS  Article  PubMed  Google Scholar 

  24. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamilton, A. J., Voinnet, O., Chappell, L. & Baulcombe, D. C. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2002).

    Article  CAS  Google Scholar 

  27. Han, M.-H., Goud, S., Song, L. & Fedoroff, N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl Acad. Sci. USA 101, 1093–1098 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Vazquez, F., Gasciolli, V., Crete, P. & Vaucheret, H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14, 346–351 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    CAS  Article  PubMed  Google Scholar 

  30. Jones-Rhoades, M. W. & Bartel, D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14, 787–799 (2004).

    CAS  Article  PubMed  Google Scholar 

  31. Llave, C., Kasschau, K. D., Rector, M. A. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Sunkar, R. & Zhu, J.-K. Novel and stress-regulated miRNAs and other small RNAs from Arabidopsis. Plant Cell (in the press).

  33. Palatanik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).

    ADS  Article  CAS  Google Scholar 

  34. Emery, J., Floyd, S. K., Alvarez, J., Baum, S. F. & Bowman, J. L. Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    CAS  Article  PubMed  Google Scholar 

  35. Chen, X. M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  36. Mallory, A. C., Dugas, D. V., Bartel, D. P. & Bartel, B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14, 1035–1046 (2004).

    CAS  Article  PubMed  Google Scholar 

  37. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  38. Xie, Z., Kasschau, K. D. & Carrington, J. C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003).

    CAS  Article  PubMed  Google Scholar 

  39. Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY: a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 1484–1495 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Floyd, S. K. & Bowman, J. L. Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485–486 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  41. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    CAS  Article  PubMed  Google Scholar 

  42. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169–178 (2000).

    CAS  Article  PubMed  Google Scholar 

  43. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).

    ADS  CAS  Article  PubMed  Google Scholar 

  44. Dalmay, T., Hamilton, A. J., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000).

    CAS  Article  PubMed  Google Scholar 

  45. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    CAS  Article  PubMed  Google Scholar 

  46. Iyer, L. M., Koonin, E. V. & Aravind, L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct. Biol. 3, 1–23 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dalmay, T. D., Horsefield, R., Braunstein, T. H. & Baulcombe, D. C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J. 20, 2069–2078 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Xie, Z., Fan, B., Chen, C. H. & Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl Acad. Sci. USA 98, 6516–6521 (2001).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Makeyev, E. V. & Bamford, D. H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell 10, 1417–1427 (2002).

    CAS  Article  PubMed  Google Scholar 

  50. Schiebel, W., Haas, B., Marinkovic, S., Klanner, A. & Sanger, H. L. RNA-directed RNA polymerase from tomato leaves. II. Catalytic in vitro properties. J. Biol. Chem. 268, 11858–11867 (1993).

    CAS  PubMed  Google Scholar 

  51. Vaistij, F. E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    CAS  Article  PubMed  Google Scholar 

  53. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  54. Martienssen, R. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet. 35, 1–2 (2003).

    Article  CAS  Google Scholar 

  55. Voinnet, O., Lederer, C. & Baulcombe, D. C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167 (2000).

    CAS  Article  PubMed  Google Scholar 

  56. Palauqui, J.-C., Elmayan, T., Pollien, J.-M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Voinnet, O. & Baulcombe, D. C. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  58. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  59. Feinberg, E. H. & Hunter, C. P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545–1547 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  60. Winston, W. M., Molodowitch, C. & Hunter, C. P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  61. Haywood, V., Kragler, F. & Lucas, W. J. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14, S303–S325 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. & Voinnet, O. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523–4533 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Lakatos, L., Szittya, G., Silhavy, D. & Burgyan, J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 23, 876–884 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Mallory, A. C. et al. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13, 571–583 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Ding, B., Kwon, M.-O., Hammond, R. & Owens, R. Cell-to-cell movement of potato spindle tuber viroid. Plant J. 12, 931–936 (1997).

    CAS  Article  PubMed  Google Scholar 

  66. Kim, M., Canio, W., Kessler, S. & Sinha, N. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287–289 (2001).

    CAS  Article  PubMed  Google Scholar 

  67. Juarez, M. T., Kul, J. S., Thomas, J., Heller, B. A. & Timmermans, M. C. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  68. Kidner, C. A. & Martienssen, R. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  69. Yoo, B.-C. et al. A systemic small RNA signaling system in plants. Plant Cell, 1979–2000 (2004).

  70. Moissiard, G. & Voinnet, O. Viral suppression of RNA silencing in plants. Mol. Plant Pathol. 5, 71–82 (2004).

    CAS  Article  PubMed  Google Scholar 

  71. Szittya, G., Molnar, A., Silhavy, D., Hornyik, C. & Burgyan, J. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14, 359–372 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Wang, M.-B. et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc. Natl Acad. Sci. USA 101, 3275–3280 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. & Carrington, J. C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179–1186 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Mallory, A. C., Reinhart, B. J., Bartel, D., Vance, V. B. & Bowman, L. H. A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and microRNAs in tobacco. Proc. Natl Acad. Sci. USA 99, 15228–15233 (2002).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Vargason, J. M., Szittya, G., Burgyan, J. & Tanaka Hall, T. M. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811 (2003).

    CAS  Article  PubMed  Google Scholar 

  77. Ye, K., Malinina, L. & Patel, D. J. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426, 874–878 (2003).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Li, W.-X. et al. Interferon antagonist proteins of influenza and vaccina virus are suppressors of RNA silencing. Proc. Natl Acad. Sci. USA 101, 1350–1355 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  Article  PubMed  Google Scholar 

  80. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  81. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  82. Lichner, Z., Silhavy, D. & Burgyan, J. Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol 84, 975–980 (2003).

    CAS  Article  PubMed  Google Scholar 

  83. Kasschau, K. D. et al. P1/HC-Pro a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4, 205–217 (2003).

    CAS  Article  PubMed  Google Scholar 

  84. Pruss, G. J. et al. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology 320, 107–120 (2004).

    CAS  Article  PubMed  Google Scholar 

  85. Achard, P., Herr, A. J., Baulcombe, D. & Harberd, N. P. Modulation of photoperiodic control of floral transition by a hormonally regulated microRNA. Genes Dev. (in the press).

  86. Aukerman, M. J. & Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. VanHoudt, H., Ingelbrecht, I., VanMontagu, M. & Depicker, A. Post-transcriptional silencing of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3′ flanking regions. Plant J. 12, 379–392 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I thank the Gatsby Charitable Foundation for supporting work in my laboratory.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004). https://doi.org/10.1038/nature02874

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02874

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing