Review Article | Published:

The synthesis of organic and inorganic compounds in evolved stars

Nature volume 430, pages 985991 (26 August 2004) | Download Citation

Subjects

Abstract

Recent isotopic analysis of meteorites and interplanetary dust has identified solid-state materials of pre-solar origin. We can now trace the origin of these inorganic grains to the circumstellar envelopes of evolved stars. Moreover, organic (aromatic and aliphatic) compounds have been detected in proto-planetary nebulae and planetary nebulae, which are the descendants of carbon stars. This implies that molecular synthesis is actively happening in the circumstellar environment on timescales as short as several hundred years. The detection of stellar grains in the Solar System suggests that they can survive their journey through the interstellar medium and that they are a major contributor of interstellar grains.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys. 69, 995–1084 (1997)

  2. 2.

    in Planetary Nebulae: Their Evolution and Role in the Universe (eds Kwok, S., Dopita, M. & Sutherland, R.) 73–81 (ASP, San Francisco, 2003)

  3. 3.

    , , & Grain destruction in shocks in the interstellar medium. Astrophys. J. 433, 797–810 (1994)

  4. 4.

    Effects of mass loss on the late stages of stellar evolution. Phys. Rep. 156, 113–146 (1987)

  5. 5.

    The neutral envelopes around AGB and post-AGB objects. IAU Symp. 178: Molecules in Astrophysics: Probes and Processes (ed. van Dishoeck, E.) 457–468 (Kluwer, Dordrecht, 1997)

  6. 6.

    & The origin of circumstellar silicon carbide grain found in meteorites. Meteoritics 30, 661–678 (1995)

  7. 7.

    Proto-planetary nebulae. Annu. Rev. Astron. Astrophys. 31, 63–92 (1993)

  8. 8.

    Post-AGB Stars. Annu. Rev. Astron. Astrophys. 41, 391–427 (2003)

  9. 9.

    & Spectral energy distributions of compact planetary nebulae. Astron. Astrophys. 250, 179–211 (1991)

  10. 10.

    , , & The chemistry of protoplanetary nebulae. Astron. Astrophys. 402, 189–199 (2003)

  11. 11.

    , & A chemical model of the neutral envelope of the planetary nebula NGC 7027. Astrophys. J. 532, 994–1005 (2000)

  12. 12.

    , & Classification and identification of IRAS sources with low-resolution spectra. Astrophys. J. Suppl. 112, 557–584 (1997)

  13. 13.

    et al. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys. 339, 904–916 (1998)

  14. 14.

    , & Sources of the 13 micron feature associated with oxygen-rich circumstellar dust. Astrophys. J. 463, 310–319 (1996)

  15. 15.

    et al. On the origin of the 13 µm feature. A study of ISO-SWS spectra of oxygen-rich AGB stars. Astron. Astrophys. 352, 609–618 (1999)

  16. 16.

    , , , & On the origin of the 19.5 µm feature. Identifying circumstellar Mg-Fe-oxides. Astron. Astrophys. 393, L7–L10 (2002)

  17. 17.

    , & A 21 micron emission feature in four proto-planetary nebulae. Astrophys. J. 345, L51–L54 (1989)

  18. 18.

    , & in IAU Symp. 191: Asymptotic Giant Branch Stars (eds Le Bertre, T., Lèbre, A. & Waelkens, C.) 297–302 (ASP, San Francisco, 1999)

  19. 19.

    , & High-resolution Infrared Space Observatory spectroscopy of the unidentified 21 micron feature. Astrophys. J. 516, L99–L102 (1999)

  20. 20.

    et al. Hydrocarbon emission features in the IR spectra of warm supergiants. Astrophys. J. 365, L23–L26 (1990)

  21. 21.

    The lowest of the strongly infrared active vibrations of the fulleranes and astronomical emission band at a wavelength of 21-microns. Mon. Not. R. Astron. Soc. 277, 1555–1566 (1995)

  22. 22.

    , & Diamonds in carbon-rich proto-planetary nebulae. Astron. Astrophys. 336, L41–L44 (1998)

  23. 23.

    et al. Titanium carbide nanocrystals in circumstellar environments. Science 288, 313–316 (2000)

  24. 24.

    & Processing of presolar grains around post-asymptotic giant branch stars: silicon carbide as the carrier of the 21 micron feature. Astrophys. J. 600, 986–991 (2004)

  25. 25.

    , & A far-infrared emission feature in carbon-rich stars and planetary nebulae. Astrophys. J. 248, 195–200 (1981)

  26. 26.

    et al. The 30 micron emission band in carbon-rich pre-planetary nebulae. Astrophys. J. 454, 819–825 (1995)

  27. 27.

    , & 2–45 micron infrared spectroscopy of carbon-rich proto-planetary nebulae. Astrophys. J. 535, 275–292 (2000)

  28. 28.

    & Laboratory infrared spectra of predicted condensates in carbon-rich stars. Astrophys. J. 290, L35–L39 (1985)

  29. 29.

    , & The 4 to 8 micron spectrum of NGC 7027. Astrophys. J. 217, L149–L153 (1977)

  30. 30.

    & The infrared spectrum of interstellar dust - Surface functional groups on carbon. Mon. Not. R. Astron. Soc. 196, 269–274 (1981)

  31. 31.

    et al. Infrared Space Observatory's discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. 546, L123–L126 (2001)

  32. 32.

    , & Three micron spectroscopy of IRAS sources—Observed and laboratory signatures of PAHs. Astron. Astrophys. 235, 367–378 (1990)

  33. 33.

    , , & Unusual 3 micron emission features in three proto-planetary nebulae. Astrophys. J. 387, L89–L91 (1992)

  34. 34.

    et al. The CH out-of-plane bending modes of PAH molecules in astrophysical environments. Astron. Astrophys. 370, 1030–1043 (2001)

  35. 35.

    , & Chemical evolution of carbonaceous materials in the last stages of stellar evolution. Astron. Astrophys. 350, L35–L38 (1999)

  36. 36.

    , & On the origin of infrared plateau features in proto-planetary nebulae. Astrophys. J. 554, L87–L90 (2001)

  37. 37.

    , , & Infrared spectrum of quenched carbonaceous composite (QCC). II—A new identification of the 7.7 and 8.6 micron unidentified infrared emission bands. Astrophys. J. 320, L63–L67 (1987)

  38. 38.

    , , , & Mass extinction coefficients of various submicron amorphous carbon grains: Tabulated values from 40 nm to 2 mm. Astron. Astrophys. Suppl. 113, 561–577 (1995)

  39. 39.

    & The decomposition of hydrogenated amorphous carbon: a connection with polycyclic aromatic hydrocarbon molecules. Astrophys. J. 472, L123–L125 (1996)

  40. 40.

    et al. Nanoparticles produced by laser pyrolysis of hydrocarbons: analogy with carbon cosmic dust. Astron. Astrophys. 330, 1127–1135 (1998)

  41. 41.

    & A new component of the interstellar matter: small grains and large aromatic molecules. Annu. Rev. Astron. Astrophys. 27, 161–198 (1989)

  42. 42.

    , & Interstellar polycyclic aromatic hydrocarbons—the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. 71, 733–775 (1989)

  43. 43.

    Aromatic hydrocarbons, diamonds, and fullerenes in interstellar space: puzzles to be solved by laboratory and theoretical astrochemistry. Spectrochim. Acta A 57, 627–642 (2001)

  44. 44.

    , , , & A coal model for the carriers of the unidentified IR bands. Astron. Astrophys. 217, 204–208 (1989)

  45. 45.

    , , & Coal models for the infrared emission spectra of proto-planetary nebulae. Astrophys. J. 464, 810–817 (1996)

  46. 46.

    et al. A comparison of solid-state carbonaceous models of cosmic dust. Astron. Astrophys. 315, 222–236 (1996)

  47. 47.

    The use of kerogen data in understanding the properties and evolution of interstellar carbonaceous dust. Astron. Astrophys. 378, 597–607 (2001)

  48. 48.

    , & The structure and evolution of hydrogenated amorphous carbon grains and mantles in the interstellar medium. Q. J. R. Astron. Soc. 31, 567–582 (1990)

  49. 49.

    , & Infrared emission spectra from hydrogenated amorphous carbon. Astrophys. J. 490, L175–L177 (1997)

  50. 50.

    , , & Infrared spectrum of the laboratory-synthesized quenched carbonaceous composite (QCC): comparison with the infrared unidentified emission bands. Astrophys. J. 287, L51–L54 (1984)

  51. 51.

    et al. Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale-Bopp) pre- and postperihelion. Astrophys. J. 517, 1034–1058 (1999)

  52. 52.

    , , , & Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300, 105–108 (2003)

  53. 53.

    , & Stardust silicates from primitive meteorites. Nature 428, 921–924 (2004)

  54. 54.

    & Discovery of ancient silicate stardust in a meteorite. Science 303, 1496–1499 (2004)

  55. 55.

    & The organic refractory material in the diffuse interstellar medium: mid-infrared spectroscopic constraints. Astrophys. J. Suppl. 138, 75–98 (2002)

  56. 56.

    et al. The infrared (3.2–3.6 micron) spectrum of Comet P/Swift-Tuttle—Detection of methanol and other organics. Mon. Not. R. Astron. Soc. 265, 1022–1026 (1993)

  57. 57.

    & Identification of complex aromatic molecules in individual interplanetary dust particles. Science 262, 721–725 (1993)

  58. 58.

    , , , & Interstellar diamonds in meteorites. Nature 326, 160–162 (1987)

  59. 59.

    , , , & Stellar sapphires: the properties and origins of presolar Al2O3 in Meteorites. Astrophys. J. 483, 475–495 (1997)

  60. 60.

    et al. Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature 330, 728–730 (1987)

  61. 61.

    Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Annu. Rev. Earth Planet. Sci. 26, 147–188 (1998)

  62. 62.

    , & 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. Geochim. Cosmochim. Acta 51, 299–303 (1987)

  63. 63.

    , , & A preliminary assessment of the organic content of interplanetary dust particles. Lunar Planet. Sci 34, 1652 (2003)

  64. 64.

    Identification of molecular-cloud material in interplanetary dust particles. Nature 404, 968–971 (2000)

  65. 65.

    et al. Stardust: comet and interstellar dust sample return mission. J. Geophys. Res. 108, SRD1–1 (2003)

  66. 66.

    , , , & The origin of organic matter in the solar system: evidence from the interplanetary dust particles. Geophys. Cosmophys. Acta 67, 4791–4806 (2003)

  67. 67.

    , & Solid-state (1H and 13C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite: a self-consistent quantitative analysis. Geophys. Cosmophys. Acta 66, 1851–1865 (2002)

  68. 68.

    , , & Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geophys. Cosmophys. Acta 67, 3373–3783 (2003)

Download references

Author information

Affiliations

  1. Institute of Astronomy & Astrophysics, Academia Sinica, PO Box 23-141, Taipei 106, Taiwan

    • Sun Kwok

Authors

  1. Search for Sun Kwok in:

Competing interests

The author declares that he has no competing financial interests.

Corresponding author

Correspondence to Sun Kwok.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature02862

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.