Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The synthesis of organic and inorganic compounds in evolved stars

Abstract

Recent isotopic analysis of meteorites and interplanetary dust has identified solid-state materials of pre-solar origin. We can now trace the origin of these inorganic grains to the circumstellar envelopes of evolved stars. Moreover, organic (aromatic and aliphatic) compounds have been detected in proto-planetary nebulae and planetary nebulae, which are the descendants of carbon stars. This implies that molecular synthesis is actively happening in the circumstellar environment on timescales as short as several hundred years. The detection of stellar grains in the Solar System suggests that they can survive their journey through the interstellar medium and that they are a major contributor of interstellar grains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Invisible stars.
Figure 2: The unidentified emission feature at 21 µm.
Figure 3: Stretching and bending modes of aromatic compounds.
Figure 4: Broad emission features in PPNe.
Figure 5: A model of carbonaceous interstellar dust consisting of various aromatic and aliphatic groups (after ref.

Similar content being viewed by others

References

  1. Wallerstein, G. et al. Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys. 69, 995–1084 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Lattanzio, J. in Planetary Nebulae: Their Evolution and Role in the Universe (eds Kwok, S., Dopita, M. & Sutherland, R.) 73–81 (ASP, San Francisco, 2003)

    Google Scholar 

  3. Jones, A. P., Tielens, A. G. G. M., Hollenbach, D. J. & McKee, C. F. Grain destruction in shocks in the interstellar medium. Astrophys. J. 433, 797–810 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Kwok, S. Effects of mass loss on the late stages of stellar evolution. Phys. Rep. 156, 113–146 (1987)

    Article  ADS  Google Scholar 

  5. Olofsson, H. The neutral envelopes around AGB and post-AGB objects. IAU Symp. 178: Molecules in Astrophysics: Probes and Processes (ed. van Dishoeck, E.) 457–468 (Kluwer, Dordrecht, 1997)

    Google Scholar 

  6. Lodders, K. & Fegley, B. The origin of circumstellar silicon carbide grain found in meteorites. Meteoritics 30, 661–678 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Kwok, S. Proto-planetary nebulae. Annu. Rev. Astron. Astrophys. 31, 63–92 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Van Winckel, H. Post-AGB Stars. Annu. Rev. Astron. Astrophys. 41, 391–427 (2003)

    Article  ADS  Google Scholar 

  9. Zhang, C. Y. & Kwok, S. Spectral energy distributions of compact planetary nebulae. Astron. Astrophys. 250, 179–211 (1991)

    ADS  CAS  Google Scholar 

  10. Woods, P. M., Millar, T. J., Herbst, E. & Zijlstra, A. A. The chemistry of protoplanetary nebulae. Astron. Astrophys. 402, 189–199 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Hasegawa, T., Volk, K. & Kwok, S. A chemical model of the neutral envelope of the planetary nebula NGC 7027. Astrophys. J. 532, 994–1005 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Kwok, S., Volk, K. & Bidelman, W. P. Classification and identification of IRAS sources with low-resolution spectra. Astrophys. J. Suppl. 112, 557–584 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Jäger, C. et al. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys. 339, 904–916 (1998)

    ADS  Google Scholar 

  14. Sloan, G. C., LeVan, P. D. & Little-Marenin, I. R. Sources of the 13 micron feature associated with oxygen-rich circumstellar dust. Astrophys. J. 463, 310–319 (1996)

    Article  ADS  Google Scholar 

  15. Posch, T. et al. On the origin of the 13 µm feature. A study of ISO-SWS spectra of oxygen-rich AGB stars. Astron. Astrophys. 352, 609–618 (1999)

    ADS  CAS  Google Scholar 

  16. Posch, T., Kerschbaum, F., Mutschke, H., Dorschner, J. & Jäger, C. On the origin of the 19.5 µm feature. Identifying circumstellar Mg-Fe-oxides. Astron. Astrophys. 393, L7–L10 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Kwok, S., Volk, K. & Hrivnak, B. J. A 21 micron emission feature in four proto-planetary nebulae. Astrophys. J. 345, L51–L54 (1989)

    Article  ADS  CAS  Google Scholar 

  18. Kwok, S., Volk, K. & Hrivnak, B. J. in IAU Symp. 191: Asymptotic Giant Branch Stars (eds Le Bertre, T., Lèbre, A. & Waelkens, C.) 297–302 (ASP, San Francisco, 1999)

    Google Scholar 

  19. Volk, K., Kwok, S. & Hrivnak, B. J. High-resolution Infrared Space Observatory spectroscopy of the unidentified 21 micron feature. Astrophys. J. 516, L99–L102 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Buss, R. H. Jr et al. Hydrocarbon emission features in the IR spectra of warm supergiants. Astrophys. J. 365, L23–L26 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Webster, A. The lowest of the strongly infrared active vibrations of the fulleranes and astronomical emission band at a wavelength of 21-microns. Mon. Not. R. Astron. Soc. 277, 1555–1566 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Hill, H. G. M., Jones, A. P. & d'Hendecourt, L. B. Diamonds in carbon-rich proto-planetary nebulae. Astron. Astrophys. 336, L41–L44 (1998)

    ADS  CAS  Google Scholar 

  23. von Helden, G. et al. Titanium carbide nanocrystals in circumstellar environments. Science 288, 313–316 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Speck, A. K. & Hofmeister, A. M. Processing of presolar grains around post-asymptotic giant branch stars: silicon carbide as the carrier of the 21 micron feature. Astrophys. J. 600, 986–991 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Forrest, W. J., Houck, J. R. & McCarthy, J. F. A far-infrared emission feature in carbon-rich stars and planetary nebulae. Astrophys. J. 248, 195–200 (1981)

    Article  ADS  CAS  Google Scholar 

  26. Omont, A. et al. The 30 micron emission band in carbon-rich pre-planetary nebulae. Astrophys. J. 454, 819–825 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Hrivnak, B. J., Volk, K. & Kwok, S. 2–45 micron infrared spectroscopy of carbon-rich proto-planetary nebulae. Astrophys. J. 535, 275–292 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Goebel, J. H. & Moseley, S. H. Laboratory infrared spectra of predicted condensates in carbon-rich stars. Astrophys. J. 290, L35–L39 (1985)

    Article  ADS  CAS  Google Scholar 

  29. Russell, R. W., Soifer, B. T. & Willner, S. P. The 4 to 8 micron spectrum of NGC 7027. Astrophys. J. 217, L149–L153 (1977)

    Article  ADS  CAS  Google Scholar 

  30. Duley, W. W. & Williams, D. A. The infrared spectrum of interstellar dust - Surface functional groups on carbon. Mon. Not. R. Astron. Soc. 196, 269–274 (1981)

    Article  ADS  CAS  Google Scholar 

  31. Cernicharo, J. et al. Infrared Space Observatory's discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. 546, L123–L126 (2001)

    Article  ADS  CAS  Google Scholar 

  32. Jourdain de Muizon, M., d'Hendecourt, L. B. & Geballe, T. R. Three micron spectroscopy of IRAS sources—Observed and laboratory signatures of PAHs. Astron. Astrophys. 235, 367–378 (1990)

    ADS  CAS  Google Scholar 

  33. Geballe, T. R., Tielens, A. G. G. M., Kwok, S. & Hrivnak, B. J. Unusual 3 micron emission features in three proto-planetary nebulae. Astrophys. J. 387, L89–L91 (1992)

    Article  ADS  CAS  Google Scholar 

  34. Hony, S. et al. The CH out-of-plane bending modes of PAH molecules in astrophysical environments. Astron. Astrophys. 370, 1030–1043 (2001)

    Article  ADS  Google Scholar 

  35. Kwok, S., Volk, K. & Hrivnak, B. J. Chemical evolution of carbonaceous materials in the last stages of stellar evolution. Astron. Astrophys. 350, L35–L38 (1999)

    ADS  CAS  Google Scholar 

  36. Kwok, S., Volk, K. & Bernath, P. On the origin of infrared plateau features in proto-planetary nebulae. Astrophys. J. 554, L87–L90 (2001)

    Article  ADS  CAS  Google Scholar 

  37. Sakata, A., Wada, S., Onaka, T. & Tokunaga, A. T. Infrared spectrum of quenched carbonaceous composite (QCC). II—A new identification of the 7.7 and 8.6 micron unidentified infrared emission bands. Astrophys. J. 320, L63–L67 (1987)

    Article  ADS  CAS  Google Scholar 

  38. Colangeli, L., Mennella, V., Palumbo, P., Rotundi, A. & Bussoletti, E. Mass extinction coefficients of various submicron amorphous carbon grains: Tabulated values from 40 nm to 2 mm. Astron. Astrophys. Suppl. 113, 561–577 (1995)

    ADS  CAS  Google Scholar 

  39. Scott, A. & Duely, W. W. The decomposition of hydrogenated amorphous carbon: a connection with polycyclic aromatic hydrocarbon molecules. Astrophys. J. 472, L123–L125 (1996)

    Article  ADS  CAS  Google Scholar 

  40. Herlin, N. et al. Nanoparticles produced by laser pyrolysis of hydrocarbons: analogy with carbon cosmic dust. Astron. Astrophys. 330, 1127–1135 (1998)

    ADS  CAS  Google Scholar 

  41. Puget, J. L. & Léger, A. A new component of the interstellar matter: small grains and large aromatic molecules. Annu. Rev. Astron. Astrophys. 27, 161–198 (1989)

    Article  ADS  CAS  Google Scholar 

  42. Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. R. Interstellar polycyclic aromatic hydrocarbons—the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. 71, 733–775 (1989)

    Article  ADS  CAS  Google Scholar 

  43. Sellgren, K. Aromatic hydrocarbons, diamonds, and fullerenes in interstellar space: puzzles to be solved by laboratory and theoretical astrochemistry. Spectrochim. Acta A 57, 627–642 (2001)

    Article  ADS  CAS  Google Scholar 

  44. Papoular, R., Conard, J., Giuliano, M., Kister, J. & Mille, G. A coal model for the carriers of the unidentified IR bands. Astron. Astrophys. 217, 204–208 (1989)

    ADS  CAS  Google Scholar 

  45. Guillois, O., Nenner, I., Papoular, R. & Reynaud, C. Coal models for the infrared emission spectra of proto-planetary nebulae. Astrophys. J. 464, 810–817 (1996)

    Article  ADS  CAS  Google Scholar 

  46. Papoular, R. et al. A comparison of solid-state carbonaceous models of cosmic dust. Astron. Astrophys. 315, 222–236 (1996)

    ADS  CAS  Google Scholar 

  47. Papoular, R. The use of kerogen data in understanding the properties and evolution of interstellar carbonaceous dust. Astron. Astrophys. 378, 597–607 (2001)

    Article  ADS  CAS  Google Scholar 

  48. Jones, A. P., Duley, W. W. & Williams, D. A. The structure and evolution of hydrogenated amorphous carbon grains and mantles in the interstellar medium. Q. J. R. Astron. Soc. 31, 567–582 (1990)

    ADS  CAS  Google Scholar 

  49. Scott, A. D., Duley, W. W. & Jahani, H. R. Infrared emission spectra from hydrogenated amorphous carbon. Astrophys. J. 490, L175–L177 (1997)

    Article  ADS  CAS  Google Scholar 

  50. Sakata, A., Wada, A., Tanab'e, T. & Onaka, T. Infrared spectrum of the laboratory-synthesized quenched carbonaceous composite (QCC): comparison with the infrared unidentified emission bands. Astrophys. J. 287, L51–L54 (1984)

    Article  ADS  CAS  Google Scholar 

  51. Wooden, D. H. et al. Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale-Bopp) pre- and postperihelion. Astrophys. J. 517, 1034–1058 (1999)

    Article  ADS  CAS  Google Scholar 

  52. Messenger, S., Keller, L. P., Stadermann, F. J., Walker, R. M. & Zinner, E. Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300, 105–108 (2003)

    Article  ADS  CAS  Google Scholar 

  53. Nagashima, K., Krot, A. N. & Yurimoto, H. Stardust silicates from primitive meteorites. Nature 428, 921–924 (2004)

    Article  ADS  CAS  Google Scholar 

  54. Nguyen, A. N. & Zinner, E. Discovery of ancient silicate stardust in a meteorite. Science 303, 1496–1499 (2004)

    Article  ADS  CAS  Google Scholar 

  55. Pendleton, Y. J. & Allamandola, L. J. The organic refractory material in the diffuse interstellar medium: mid-infrared spectroscopic constraints. Astrophys. J. Suppl. 138, 75–98 (2002)

    Article  ADS  CAS  Google Scholar 

  56. Davies, J. K. et al. The infrared (3.2–3.6 micron) spectrum of Comet P/Swift-Tuttle—Detection of methanol and other organics. Mon. Not. R. Astron. Soc. 265, 1022–1026 (1993)

    Article  ADS  CAS  Google Scholar 

  57. Clemett, S. J. & Maechling, C. R. Identification of complex aromatic molecules in individual interplanetary dust particles. Science 262, 721–725 (1993)

    Article  ADS  CAS  Google Scholar 

  58. Lewis, R. S., Ming, T., Wacker, J. F., Anders, E. & Steel, E. Interstellar diamonds in meteorites. Nature 326, 160–162 (1987)

    Article  ADS  CAS  Google Scholar 

  59. Nittler, L. R., Alexander, C. M. O'D., Gao, X., Walker, R. M. & Zinner, E. Stellar sapphires: the properties and origins of presolar Al2O3 in Meteorites. Astrophys. J. 483, 475–495 (1997)

    Article  ADS  CAS  Google Scholar 

  60. Bernatowicz, T. et al. Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature 330, 728–730 (1987)

    Article  ADS  CAS  Google Scholar 

  61. Zinner, E. Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Annu. Rev. Earth Planet. Sci. 26, 147–188 (1998)

    Article  ADS  CAS  Google Scholar 

  62. Cronin, J. R., Pizzarello, S. & Frye, J. S. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. Geochim. Cosmochim. Acta 51, 299–303 (1987)

    Article  ADS  CAS  Google Scholar 

  63. Flynn, G. J., Keller, L. P., Wirick, S. & Jacobsen, C. A preliminary assessment of the organic content of interplanetary dust particles. Lunar Planet. Sci 34, 1652 (2003)

    ADS  Google Scholar 

  64. Messenger, S. Identification of molecular-cloud material in interplanetary dust particles. Nature 404, 968–971 (2000)

    Article  ADS  CAS  Google Scholar 

  65. Brownlee, D. E. et al. Stardust: comet and interstellar dust sample return mission. J. Geophys. Res. 108, SRD1–1 (2003)

    Article  Google Scholar 

  66. Flynn, G. J., Keller, L. P., Feser, M., Wirick, S. & Jacobsen, C. The origin of organic matter in the solar system: evidence from the interplanetary dust particles. Geophys. Cosmophys. Acta 67, 4791–4806 (2003)

    ADS  CAS  Google Scholar 

  67. Cody, G. D., Alexander, C. M. O'D. & Tera, F. Solid-state (1H and 13C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite: a self-consistent quantitative analysis. Geophys. Cosmophys. Acta 66, 1851–1865 (2002)

    ADS  CAS  Google Scholar 

  68. Aléon, J., Robert, F., Chaussidon, M. & Marty, B. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geophys. Cosmophys. Acta 67, 3373–3783 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Kwok.

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, S. The synthesis of organic and inorganic compounds in evolved stars. Nature 430, 985–991 (2004). https://doi.org/10.1038/nature02862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02862

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing