Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Demonstration of a quantum teleportation network for continuous variables

Abstract

Quantum teleportation1,2,3,4,5,6,7,8 involves the transportation of an unknown quantum state from one location to another, without physical transfer of the information carrier. Although quantum teleportation is a naturally bipartite process, it can be extended to a multipartite protocol known as a quantum teleportation network9. In such a network, entanglement is shared between three or more parties. For the case of three parties (a tripartite network), teleportation of a quantum state can occur between any pair, but only with the assistance of the third party. Multipartite quantum protocols are expected to form fundamental components for larger-scale quantum communication and computation10,11. Here we report the experimental realization of a tripartite quantum teleportation network for quantum states of continuous variables (electromagnetic field modes). We demonstrate teleportation of a coherent state between three different pairs in the network, unambiguously demonstrating its tripartite character.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The experimental set-up for quantum teleportation from Alice to Bob under the control of Claire.
Figure 2: Quantum teleportation from Alice to Bob under the control of Claire.
Figure 3: Dependence of the fidelities on the controller's gain.

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Bowen, W. P. et al. Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003)

    Article  ADS  Google Scholar 

  8. Zhang, T. C., Goh, K. W., Chou, C. W., Lodahl, P. & Kimble, H. J. Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003)

    Article  ADS  Google Scholar 

  9. van Loock, P. & Braunstein, S. L. Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)

    MATH  Google Scholar 

  11. Braunstein, S. L. & Pati, A. K. Quantum Information with Continuous Variables (Kluwer Academic, Dordrecht, 2003)

    Book  Google Scholar 

  12. Aoki, T. et al. Experimental creation of a fully inseparable tripartite continuous-variable state. Phys. Rev. Lett. 91, 080404 (2003)

    Article  ADS  Google Scholar 

  13. Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. van Loock, P. & Furusawa, A. Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A 67, 052315 (2003)

    Article  ADS  Google Scholar 

  16. Jing, J. et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90, 167903 (2003)

    Article  ADS  Google Scholar 

  17. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Braunstein, S. L., Fuchs, C. A. & Kimble, H. J. Criteria for continuous-variable quantum teleportation. J. Mod. Opt. 47, 267–278 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Braunstein, S. L., Fuchs, C. A., Kimble, H. J. & Loock, P. Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 64, 022321 (2001)

    Article  ADS  Google Scholar 

  20. van Loock, P. & Braunstein, S. L. Telecloning of continuous quantum variables. Phys. Rev. Lett. 87, 247901 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the MEXT and the MPHPT of Japan, and the Research Foundation for Opto-Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Furusawa.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yonezawa, H., Aoki, T. & Furusawa, A. Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430–433 (2004). https://doi.org/10.1038/nature02858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02858

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing