Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea

Abstract

As lithospheric plates are subducted, rocks are metamorphosed under high-pressure and ultrahigh-pressure conditions to produce eclogites and eclogite facies metamorphic rocks. Because chemical equilibrium is rarely fully achieved, eclogites may preserve in their distinctive mineral assemblages and textures a record of the pressures, temperatures and deformation the rock was subjected to during subduction and subsequent exhumation. Radioactive parent–daughter isotopic variations within minerals reveal the timing of these events. Here we present in situ zircon U/Pb ion microprobe data that dates the timing of eclogite facies metamorphism in eastern Papua New Guinea at 4.3 ± 0.4 Myr ago, making this the youngest documented eclogite exposed at the Earth's surface. Eclogite exhumation from depths of 75 km was extremely rapid and occurred at plate tectonic rates (cm yr-1). The eclogite was exhumed within a portion of the obliquely convergent Australian–Pacific plate boundary zone, in an extending region located west of the Woodlark basin sea floor spreading centre. Such rapid exhumation (> 1 cm yr-1) of high-pressure and, we infer, ultrahigh-pressure rocks is facilitated by extension within transient plate boundary zones associated with rapid oblique plate convergence.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Eastern PNG tectonic and geologic maps4,6,21.
Figure 2: Pressure–temperature conditions for D'Entrecasteaux eclogites.
Figure 3: U/Pb, trace and REE results.

References

  1. Stein, S. & Sella, G. F. in Plate Boundary Zones (eds Stein, S. & Freymuller, J. T.) 1–26 (American Geophysical Union, Washington DC, 2002)

    Book  Google Scholar 

  2. Benes, V., Scott, S. D. & Binns, R. A. Tectonics of rift propagation into a continental margin: Western Woodlark Basin, Papua New Guinea. J. Geophys. Res. 99, 4439–4455 (1994)

    ADS  Article  Google Scholar 

  3. Hill, K. C. & Hall, R. in Mesozoic-Cenozoic Evolution of Australia's New Guinea Margin in a West Pacific Context (eds Hillis, R. R. & Muller, R. D.) (The Geological Society of America, Boulder, CO, 2003)

    Google Scholar 

  4. Davies, H. L. Crustal structure and emplacement of ophiolite in southeastern Papua New Guinea. Coll. Int. CNRS 272, 17–33 (1980)

    Google Scholar 

  5. Taylor, B., Goodliffe, A. M. & Martinez, F. How continents break up: Insights from Papua New Guinea. J. Geophys. Res. 104, 7497–7512 (1999)

    ADS  Article  Google Scholar 

  6. Taylor, B., Goodliffe, A. M., Martinez, F. & Hey, R. Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature 374, 534–537 (1995)

    ADS  CAS  Article  Google Scholar 

  7. Abers, G. A. in Non-Volcanic Rifting of Volcanic Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B. & Froitzheim, N.) 305–318 (The Geological Society of London, London, 2001)

    Google Scholar 

  8. Hill, E. J. Geometry and kinematics of shear zones formed during continental extension in eastern Papua New Guinea. J. Struct. Geol. 16, 1093–1105 (1994)

    ADS  Article  Google Scholar 

  9. Davies, H. L. & Warren, R. G. Origin of eclogite-bearing, domed, layered metamorphic complexes (“core complexes”) in the D'Entrecasteaux Islands, Papua New Guinea. Tectonics 7, 1–21 (1988)

    ADS  Article  Google Scholar 

  10. Hill, E. J., Baldwin, S. L. & Lister, G. S. Unroofing of active metamorphic core complexes in the D'Entrecasteaux Islands, Papua New Guinea. Geology 20, 907–910 (1992)

    ADS  Article  Google Scholar 

  11. Baldwin, S. L., Lister, G. S., Hill, E. J., Foster, D. A. & McDougall, I. Thermochronologic constraints on the tectonic evolution of active metamorphic core complexes, D'Entrecasteaux Islands, Papua New Guinea. Tectonics 12, 611–628 (1993)

    ADS  Article  Google Scholar 

  12. Davies, H. L. & Warren, R. G. Eclogites of the D'Entrecasteaux Islands. Contrib. Mineral. Petrol. 112, 463–474 (1992)

    ADS  CAS  Article  Google Scholar 

  13. Hill, E. J. & Baldwin, S. L. Exhumation of high-pressure metamorphic rocks during crustal extension in the D'Entrecasteaux region, Papua New Guinea. J. Metamorph. Geol. 11, 261–277 (1993)

    ADS  CAS  Article  Google Scholar 

  14. Pegler, G., Das, S. & Woodhouse, J. H. A seismological study of the eastern New Guinea and western Solomon Sea regions and its tectonic implications. Geophys. J. Int. 122, 961–981 (1995)

    ADS  Article  Google Scholar 

  15. Tregoning, P. et al. Estimation of current plate motions in Papua New Guinea from Global Positioning System observations. J. Geophys. Res. 103, 12181–12203 (1998)

    ADS  Article  Google Scholar 

  16. Weiler, P. D. & Coe, R. S. Rotations in the actively colliding Finisterre Arc Terrane: paleomagnetic constraints on Plio-Pleistocene evolution of the South Bismark microplate, northeastern Papua New Guinea. Tectonophysics 316, 297–3251 (2000)

    ADS  Article  Google Scholar 

  17. Hall, R. & Spakman, W. in Mantle Structure and Tectonic Evolution of the Region North and East of Australia (eds Hillis, R. R. & Muller, R. D.) 361–381 (The Geological Society of America, Boulder, Colorado, 2003)

    Google Scholar 

  18. Cooper, P. & Taylor, B. Seismotectonics of New Guinea: a model for arc reversal following arc-continent collision. Tectonics 6, 53–67 (1987)

    ADS  Article  Google Scholar 

  19. Abers, G. A. & Roecker, S. W. Deep structure of an arc-continent collision: earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea. J. Geophys. Res. 96, 6379–6401 (1991)

    ADS  Article  Google Scholar 

  20. Worthing, M. A. Petrology and tectonic setting of blueschist facies metabasites from the Emo metamorphics of Papua New Guinea. Aust. J. Earth Sci. 35, 159–168 (1988)

    ADS  Article  Google Scholar 

  21. Davies, H. L. & Smith, I. E. Geology of eastern Papua. Bull. Geol. Soc. Am. 82, 8299–8312 (1971)

    Article  Google Scholar 

  22. Davies, H. L. & Ives, D. J. The geology of Fergusson and Goodenough Islands, Papua New Guinea. Aust. Bur. Miner. Resour. Rep. 82, 1–83 (1965)

    Google Scholar 

  23. Zhang, R. Y. & Liou, J. G. in Ultra-High Pressure Metamorphism and Geodynamics in Collision-Type Orogenic Belts; Final Report of the Task Group III-6 of the International Lithosphere Project (eds Ernst, W. G. & Liou, J. G.) 216–228 (International Book Series 4, Bellwether Publishing for the Geological Society of America, Columbia, Maryland, 2000)

    Google Scholar 

  24. Ellis, D. J. & Green, D. H. An experimental study of the effect of Ca upon the garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 71, 13–22 (1979)

    ADS  CAS  Article  Google Scholar 

  25. Powell, R. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J. Metamorph. Geol. 3, 231–243 (1985)

    ADS  CAS  Article  Google Scholar 

  26. Holland, T. J. B. The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am. Mineral. 65, 129–134 (1980)

    CAS  Google Scholar 

  27. Gasparik, T. & Lindsley, D. L. in Pyroxenes: Reviews in Mineralogy (ed. Prewitt, C. T.) 309–340 (Mineralogical Society of America, Washington DC, 1980)

    Book  Google Scholar 

  28. Schmitt, A. K. et al. The Geysers-Cobb Mountain-Magma System, California (Part 1): U-Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim. Cosmochim. Acta 67, 3423–3442 (2003)

    ADS  CAS  Article  Google Scholar 

  29. Cherniak, D. J. & Watson, E. B. Pb diffusion in zircon. Contrib. Mineral. Petrol. 172, 198–207 (2000)

    Article  Google Scholar 

  30. Hoskin, P. W. O. & Schaltegger, U. in Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.) 27–62 (Mineralogical Society of America, Washington DC, 2003)

    Book  Google Scholar 

  31. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  32. Rubatto, D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 184, 123–138 (2002)

    ADS  CAS  Article  Google Scholar 

  33. Rubatto, D. & Hermann, J. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim. Cosmochim. Acta 67, 2173–2187 (2003)

    ADS  CAS  Article  Google Scholar 

  34. Martinez, F., Goodliffe, A. M. & Taylor, B. Metamorphic core complex formation by density inversion and lower-crust extrusion. Nature 411, 930–934 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  35. Ernst, W. G. in Physics of the Earth and Planetary Interiors: Processes and Consequences of Deep Subduction (eds Rubie, D. C. & van der Hilst, R. D.) 253–276 (Elsevier, Amsterdam, 2001)

    Google Scholar 

  36. Baldwin, S. L., Fitzgerald, P. G., Little, T. A., Webb, L. E. & Monteleone, B. D. Exhumation of the youngest high-pressure rocks, at plate tectonic rates, during Plio-Pleistocene continental extension in SE Papua New Guinea. Geol. Soc. Am. Abstr. Programs 35, 556 (2003)

    Google Scholar 

  37. Abers, G. A. et al. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea. Nature 418, 862–865 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  38. Platt, J. P. Exhumation of high-pressure rocks:a review of concepts and processes. Terra Nova 5, 119–133 (1993)

    ADS  Article  Google Scholar 

  39. Maruyama, S., Liou, J. G. & Terabayashi, M. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 38, 485–594 (1996)

    Article  Google Scholar 

  40. Rubatto, D. & Hermann, J. Exhumation as fast as subduction? Geology 29, 3–6 (2001)

    ADS  CAS  Article  Google Scholar 

  41. Hacker, B. R., Calvert, A. J., Zhang, R. Y., Ernst, W. G. & Liou, J. G. Ultrarapid exhumation of ultrahigh-pressure diamond-bearing metasedimentary rocks of the Kokchetav Massif, Kazakhstan. Lithos 70, 61–75 (2003)

    ADS  CAS  Article  Google Scholar 

  42. Little, T. A., Cox, S., Vry, J. K. & Batt, G. Variations in exhumation level and uplift-rate along the oblique-slip Alpine fault, central Southern Alps, New Zealand. Geol. Soc. Am. Bull.(in the press)

  43. Shipboard Scientific Party, in Proc. ODP. Init. Rep. 180 (eds Taylor, B., Huchon, P. & Klaus, A.) 1–77 (Ocean Drilling Program, College Station, Texas, 1999)

    Google Scholar 

Download references

Acknowledgements

S.L.B. and P.G.F. gratefully acknowledge support from the US National Science Foundation's Geoscience Directorate, Division of Earth Sciences, Tectonics and Instrumentation and Facilities Programs. M.G. acknowledges support from the Department of Energy. Fieldwork would not have been successful without the efforts of D. Pinasi, and the support from City Resources. A. Schmitt contributed significantly in helping us to obtain ion microprobe REE analyses from zircon and garnet. The ion microprobe facility at UCLA is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne L. Baldwin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Containing: Supplementary Table S1: Electron microprobe results for sample 870921; Supplementary Table S2: U-Th/Pb analytical results for zircons in sample 870921; Supplementary Table S3: Trace and rare earth element results for sample 870921; Supplementary Table S4: Trace and Rare Earth Element Partition Coefficients for sample 870921; Supplementary Figure S5: Backscattered electron image of retrogressed eclogite sample 870921, D’Entrecasteaux Islands, PNG and P–T plot of thermobarometric results. (DOC 347 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baldwin, S., Monteleone, B., Webb, L. et al. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431, 263–267 (2004). https://doi.org/10.1038/nature02846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02846

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing