Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete photo-fragmentation of the deuterium molecule

A Corrigendum to this article was published on 26 October 2006

Abstract

All properties of molecules—from binding and excitation energies to their geometry—are determined by the highly correlated initial-state wavefunction of the electrons and nuclei. Details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon1,2,3,4,5,6, by collision with a charged particle7,8 or by exposure to a strong laser pulse9,10: if the interaction causing the excitation is sufficiently understood, the fragmentation process can then be used as a tool to investigate the bound initial state11,12. The interaction and resulting fragment motions therefore pose formidable challenges to quantum theory13,14,15. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single-photon-induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mapping of the ground-state distribution of inter-nuclear distances to the kinetic energy in the final state.
Figure 2: Angular distribution in the non-coplanar frame as a function of molecular orientation.
Figure 3: Angular distribution in the non-coplanar frame as a function of KER.

References

  1. Kossmann, H., Schwarzkopf, O., Kämmerling, B. & Schmidt, V. Unexpected behavior of double photoionization in H2 . Phys. Rev. Lett. 63, 2040–2043 (1989)

    ADS  CAS  Article  Google Scholar 

  2. Dujardin, G., Besnard, M. J., Hellner, L. & Malinovitch, Y. Double photoionization of H2: An experimental test of electronic-correlation models in molecules. Phys. Rev. Lett. 35, 5012–5019 (1987)

    ADS  CAS  Google Scholar 

  3. Reddish, T. J., Wightman, J. P., MacDonald, M. A. & Cvejanovic, S. Triple differential cross section measurements for double photoionization of D2 . Phys. Rev. Lett. 79, 2438–2441 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Wightman, J., Cvejanovic, S. & Reddish, T. J. (γ,2e) cross section measurements of D2 and He. J. Phys. B 31, 1753–1764 (1998)

    ADS  CAS  Article  Google Scholar 

  5. Seccombe, D. P. et al. Photodouble ionization differential cross sections for D2 with various electron energy sharing conditions. J. Phys. B 35, 3767–3780 (2002)

    ADS  CAS  Article  Google Scholar 

  6. Dörner, R. et al. Double photoionization of spatially aligned D2 . Phys. Rev. Lett. 81, 5776–5779 (1998)

    ADS  Article  Google Scholar 

  7. Afaneh, F. et al. Must saddle point electrons always ride on the saddle? J. Phys. B. 35, L229–L235 (2002)

    CAS  Article  Google Scholar 

  8. Wood, R. M., Edwards, A. K. & Steuer, M. F. Dissociative ionization of H2 and D2 produced by bombardment with fast He+ ions. Phys. Rev. A 4, 1433–1437 (1977)

    ADS  Article  Google Scholar 

  9. Staudte, A. et al. Observation of a nearly isotropic, high-energy Coulomb explosion group in the fragmentation of D2 by short laser pulses. Phys. Rev. A. 65, 020703-1–020703-4 (2002)

    ADS  Article  Google Scholar 

  10. Rottke, H. et al. Coincident fragment detection in strong field photoionization and dissociation of H2 . Phys. Rev. Lett. 89, 013001-1–013001-4 (2002)

    ADS  Article  Google Scholar 

  11. Moshammer, R. et al. The dynamics of target ionization by fast highly charged projectiles. Nucl. Instr. Meth. Phys. Res. B 107, 62–66 (1996)

    ADS  CAS  Article  Google Scholar 

  12. Levin, V. G., Neudatchin, V. G., Pavlitchankov, A. V. & Smirnov, Yu. F. A study of the electron correlations in the H2 molecule using the double photoionisation process (γ,2e). J. Phys. B 17, 1525–1536 (1984)

    ADS  CAS  Article  Google Scholar 

  13. Rescigno, T. N., Baertschy, M., Isaacs, W. A. & McCurdy, C. W. Collisional breakup in a quantum system of three charged particles. Science 286, 2474–2479 (1999)

    CAS  Article  Google Scholar 

  14. Weber, T. et al. Fully differential cross sections for photo-double-ionization of D2 . Phys. Rev. Lett. 92, 163001-1–163001-4 (2004)

    ADS  Google Scholar 

  15. Briggs, J. & Schmidt, V. Differential cross section for photo-double-ionization of the helium atom. J. Phys. B 33, R1–R48 (2000)

    ADS  CAS  Article  Google Scholar 

  16. Dörner, R. et al. Photo-double-ionization of He: Fully differential and absolute electronic and ionic momentum distributions. Phys. Rev. A 57, 1074–1090 (1998)

    ADS  Article  Google Scholar 

  17. Le Rouzo, H. Double photoionization of molecular hydrogen: A theoretical study including the nuclear dissociation. Phys. Rev. A 37, 1512–1523 (1988)

    ADS  CAS  Article  Google Scholar 

  18. Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000)

    ADS  Article  Google Scholar 

  19. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003)

    ADS  CAS  Article  Google Scholar 

  20. Weber, T. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000)

    ADS  CAS  Article  Google Scholar 

  21. Schulz, M. et al. Three-dimensional imaging or atomic four-body processes. Nature 422, 48–50 (2003)

    ADS  CAS  Article  Google Scholar 

  22. Walter, M. & Briggs, J. S. Selection rules and isotope effects in the full fragmentation of the hydrogen molecule. Phys. Rev. Lett. 85, 1630–1633 (2000)

    ADS  CAS  Article  Google Scholar 

  23. Walter, M. & Briggs, J. S. Photo-double ionization of molecular hydrogen. J. Phys. B 32, 2487–2501 (1999)

    ADS  CAS  Article  Google Scholar 

  24. Weber, T. et al. Auger electron emission from fixed-in-space CO. Phys. Rev. Lett. 90, 153003-1–153003-4 (2003)

    ADS  Article  Google Scholar 

  25. Díez Muiño, R., Rolles, D., de Abajo, F. J. G., Fadley, C. S. & Hove, M. A. V. Angular distribution of the electrons photoemitted from core levels of oriented diatomic molecules: multiple scattering theory in non-spherical potentials. J. Phys. B 35, L359–L365 (2002)

    Article  Google Scholar 

  26. Feagin, J. M. A helium-like description of molecular hydrogen photo-double ionization. J. Phys. B 31, L729–L736 (1998)

    ADS  CAS  Article  Google Scholar 

  27. Reddish, T. J. & Feagin, J. M. Photo double ionization of molecular deuterium. J. Phys. B 32, 2473–2486 (1999)

    ADS  CAS  Article  Google Scholar 

  28. Joy, H. W. & Parr, R. G. A one-center wave function for the hydrogen molecule. J. Chem. Phys. 28, 448–453 (1958)

    ADS  CAS  Article  Google Scholar 

  29. Kheifets, A. S. & Bray, I. Application of the CCC method to the calculation of helium-photoionization triply differential cross sections. J. Phys. B 31, L447–L453 (1998)

    ADS  CAS  Article  Google Scholar 

  30. Hayes, E. F. Accurate single-center expansions using Slater type orbitals: hydrogen molecule. J. Chem. Phys. 46, 4004–4008 (1967)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Roentdek GmbH (http://www.Roentdek.com) for support with detectors, and acknowledge helpful discussion with colleagues M. Walter, J. Briggs, J. Feagin, T. Reddish and V. Schmidt. This work was supported by the Deutsche Forschungs Gemeinschaft, the Bundesministerium für Bildung und Forschung, and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (DOE). T.W. thanks Graduiertenförderung des Landes Hessen, the Alexander von Humboldt Stiftung and the Herrmann Willkomm Stiftung for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dörner.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, T., Czasch, A., Jagutzki, O. et al. Complete photo-fragmentation of the deuterium molecule. Nature 431, 437–440 (2004). https://doi.org/10.1038/nature02839

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02839

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing