Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein

Abstract

Morphogens are ‘form-generating’ substances that spread from localized sites of production and specify distinct cellular outcomes at different concentrations. A cell's perception of morphogen concentration is thought to be determined by the number of active receptors, with inactive receptors making little if any contribution1. Patched (Ptc)2,3,4,5, the receptor for the morphogen Hedgehog (Hh)6,7,8,9,10,11,12, is active in the absence of ligand and blocks the expression of target genes by inhibiting Smoothened (Smo), an essential transducer of the Hh signal3,13,14,15,16. Hh binding to Ptc abrogates the ability of Ptc to inhibit Smo, thereby unleashing Smo activity and inducing target gene expression2,3,12,13,14,15,16. Here, we show that a cell's measure of ambient Hh concentration is not determined solely by the number of active (unliganded) Ptc molecules. Instead, we find that Hh-bound Ptc can titrate the inhibitory action of unbound Ptc. Furthermore, we demonstrate that this effect is sufficient to allow normal reading of the Hh gradient in the presence of a form of Ptc that cannot bind the ligand12 but retains its ability to inhibit Smo. These results support a model in which the ratio of bound to unbound Ptc molecules determines the cellular response to Hh.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of clones expressing low (L > PΔ2), medium (M > PΔ2) and high (H > PΔ2) levels of PtcΔloop2.
Figure 2: Different amounts of PtcΔloop2 are required to inhibit the Hh pathway depending on the presence or absence of endogenous Ptc.
Figure 3: Inhibition of Hh transduction by PtcΔloop2 is blocked by co-expression of Ptc+ and Hh.
Figure 4: Estimating the change in the ratio of liganded to unliganded Ptc necessary to distinguish on and off states of the Hh transduction pathway.

Similar content being viewed by others

References

  1. Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Ingham, P. W., Taylor, A. M. & Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 353, 184–187 (1991)

    Article  ADS  CAS  Google Scholar 

  3. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996)

    Article  CAS  Google Scholar 

  4. Stone, D. M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M. & Tabin, C. J. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Tabata, T. & Kornberg, T. B. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 (1994)

    Article  CAS  Google Scholar 

  8. Capdevila, J., Estrada, M. P., Sanchez-Herrero, E. & Guerrero, I. The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J. 13, 71–82 (1994)

    Article  CAS  Google Scholar 

  9. Struhl, G., Barbash, D. A. & Lawrence, P. A. Hedgehog organises the pattern and polarity of epidermal cells in the Drosophila abdomen. Development 124, 2143–2154 (1997)

    CAS  PubMed  Google Scholar 

  10. Mullor, J. L., Calleja, M., Capdevila, J. & Guerrero, I. Hedgehog activity, independent of decapentaplegic, participates in wing disc patterning. Development 124, 1227–1237 (1997)

    CAS  Google Scholar 

  11. Strigini, M. & Cohen, S. M. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705 (1997)

    CAS  Google Scholar 

  12. Briscoe, J., Chen, Y., Jessell, T. M. & Struhl, G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001)

    Article  CAS  Google Scholar 

  13. Hooper, J. E. Distinct pathways for autocrine and paracrine Wingless signalling in Drosophila embryos. Nature 372, 461–464 (1994)

    Article  ADS  CAS  Google Scholar 

  14. van den Heuvel, M. & Ingham, P. W. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382, 547–551 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J. E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996)

    Article  CAS  Google Scholar 

  16. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001)

    Article  CAS  Google Scholar 

  17. Taipale, J., Cooper, M. K., Maiti, T. & Beachy, P. A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85, 951–961 (1996)

    Article  CAS  Google Scholar 

  19. Nakano, Y. et al. A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 341, 508–513 (1989)

    Article  ADS  CAS  Google Scholar 

  20. Hooper, J. E. & Scott, M. P. The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59, 751–765 (1989)

    Article  CAS  Google Scholar 

  21. Vervoort, M., Crozatier, M., Valle, D. & Vincent, A. The COE transcription factor Collier is a mediator of short-range Hedgehog-induced patterning of the Drosophila wing. Curr. Biol. 9, 632–639 (1999)

    Article  CAS  Google Scholar 

  22. Alcedo, J., Zou, Y. & Noll, M. Posttranscriptional regulation of smoothened is part of a self-correcting mechanism in the Hedgehog signaling system. Mol. Cell 6, 457–465 (2000)

    Article  CAS  Google Scholar 

  23. Denef, N., Neubuser, D., Perez, L. & Cohen, S. M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000)

    Article  CAS  Google Scholar 

  24. Ingham, P. W. et al. Patched represses the Hedgehog signalling pathway by promoting modification of the Smoothened protein. Curr. Biol. 10, 1315–1318 (2000)

    Article  CAS  Google Scholar 

  25. Hepker, J., Wang, Q. T., Motzny, C. K., Holmgren, R. & Orenic, T. V. Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes. Development 124, 549–558 (1997)

    CAS  PubMed  Google Scholar 

  26. Aza-Blanc, P. & Kornberg, T. B. Ci: a complex transducer of the hedgehog signal. Trends Genet. 15, 458–462 (1999)

    Article  CAS  Google Scholar 

  27. Methot, N. & Basler, K. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96, 819–831 (1999)

    Article  CAS  Google Scholar 

  28. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Greenwood, S. & Struhl, G. Different levels of Ras activity can specify distinct transcriptional and morphological consequences in early Drosophila embryos. Development 124, 4879–4886 (1997)

    CAS  PubMed  Google Scholar 

  30. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Adachi for generating transgenic flies; X.-J. Qiu for technical assistance; and R. Axel, E. Gouaux, I. Greenwald, T. Jessell, L. Johnston, R. Mann and A. Tomlinson for discussion and advice on the manuscript. A.C. is a Postdoctoral Associate and G.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Struhl.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casali, A., Struhl, G. Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein. Nature 431, 76–80 (2004). https://doi.org/10.1038/nature02835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02835

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing