Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A microtubule-binding myosin required for nuclear anchoring and spindle assembly

Abstract

Proper spindle positioning and orientation are essential for asymmetric cell division and require microtubule–actin filament (F-actin) interactions in many systems1,2. Such interactions are particularly important in meiosis3, where they mediate nuclear anchoring4,5,6, as well as meiotic spindle assembly and rotation7,8, two processes required for asymmetric cell division. Myosin-10 proteins are phosphoinositide-binding9, actin-based motors that contain carboxy-terminal MyTH4 and FERM domains of unknown function10. Here we show that Xenopus laevis myosin-10 (Myo10) associates with microtubules in vitro and in vivo, and is concentrated at the point where the meiotic spindle contacts the F-actin-rich cortex. Microtubule association is mediated by the MyTH4-FERM domains, which bind directly to purified microtubules. Disruption of Myo10 function disrupts nuclear anchoring, spindle assembly and spindle–F-actin association. Thus, this myosin has a novel and critically important role during meiosis in integrating the F-actin and microtubule cytoskeletons.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Myo10 associates with microtubules in vitro and in vivo.
Figure 2: Myo10 localizes to meiotic spindles.
Figure 3: The MyTH4-FERM domain cassette of Myo10 binds microtubules.
Figure 4: Myo10 is required for nuclear anchoring and meiotic spindle assembly.

References

  1. Gundersen, G. G. & Bretscher, A. Cell biology. Microtubule asymmetry. Science 300, 2040–2041 (2003)

    CAS  Article  PubMed  Google Scholar 

  2. Rodriguez, O. C. et al. Conserved microtubule–actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003)

    CAS  Article  PubMed  Google Scholar 

  3. Sardet, C., Prodon, F., Dumollard, R., Chang, P. & Chenevert, J. Structure and function of the egg cortex from oogenesis through fertilization. Dev. Biol. 241, 1–23 (2002)

    CAS  Article  PubMed  Google Scholar 

  4. Lessman, C. A. Germinal vesicle migration and dissolution in Rana pipiens oocytes: effect of steroids and microtubule poisons. Cell Differ. 20, 239–251 (1987)

    CAS  Article  PubMed  Google Scholar 

  5. Gard, D. L. Ectopic spindle assembly during maturation of Xenopus oocytes: evidence for functional polarization of the oocyte cortex. Dev. Biol. 159, 298–310 (1993)

    CAS  Article  PubMed  Google Scholar 

  6. Alexandre, H., Van Cauwenberge, A. & Mulnard, J. Involvement of microtubules and microfilaments in the control of the nuclear movement during maturation of mouse oocyte. Dev. Biol. 136, 311–320 (1989)

    CAS  Article  PubMed  Google Scholar 

  7. Gard, D. L., Cha, B. J. & Roeder, A. D. F-actin is required for spindle anchoring and rotation in Xenopus oocytes: a re-examination of the effects of cytochalasin B on oocyte maturation. Zygote 3, 17–26 (1995)

    CAS  Article  PubMed  Google Scholar 

  8. Sun, Q. Y. et al. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro. Biol. Reprod. 64, 879–889 (2001)

    CAS  Article  PubMed  Google Scholar 

  9. Isakoff, S. J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17, 5374–5387 (1998)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Berg, J. S., Derfler, B. H., Pennisi, C. M., Corey, D. P. & Cheney, R. E. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113, 3439–3451 (2000)

    CAS  PubMed  Google Scholar 

  11. Kim, N.-H. et al. The distribution and requirements of microtubules and microfilaments in bovine oocytes during in vitro maturation. Zygote 8, 25–32 (2000)

    CAS  Article  PubMed  Google Scholar 

  12. Shimizu, T. Polar body formation in Tubifex eggs. Ann. NY Acad. Sci. 582, 260–272 (1990)

    ADS  CAS  Article  PubMed  Google Scholar 

  13. Sardet, C., Speksnijder, J., Terasaki, M. & Chang, P. Polarity of the ascidian egg cortex before fertilization. Development 115, 221–237 (1992)

    CAS  PubMed  Google Scholar 

  14. Sokac, A. M. & Bement, W. M. Regulation and expression of metazoan unconventional myosins. Int. Rev. Cytol. 200, 197–304 (2000)

    CAS  Article  PubMed  Google Scholar 

  15. Narasimhulu, S. B. & Reddy, A. S. N. Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell 10, 957–965 (1998)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Rogers, S. L. et al. Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J. Cell Biol. 146, 1265–1276 (1999)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Cox, D. et al. Myosin-X is a downstream effector of PI(3)K during phagocytosis. Nature Cell Biol. 4, 469–477 (2002)

    CAS  Article  PubMed  Google Scholar 

  18. Gard, D. L. Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: a study by confocal immunofluorescence microscopy. Dev. Biol. 143, 346–362 (1991)

    CAS  Article  PubMed  Google Scholar 

  19. Yonezawa, S. et al. Possible involvement of myosin-X in intercellular adhesion: importance of serial pleckstrin homology regions for intracellular localization. Dev. Growth Differ. 45, 175–185 (2003)

    CAS  Article  PubMed  Google Scholar 

  20. Homma, K., Saito, J., Ikebe, R. & Ikebe, M. Motor function and regulation of myosin X. J. Biol. Chem. 276, 34348–34354 (2001)

    CAS  Article  PubMed  Google Scholar 

  21. Tokuo, H. & Ikebe, M. Myosin-X transports Mena/VASP to the tip of filapodia. Biochem. Biophys. Res. Commun. 319, 214–220 (2004)

    CAS  Article  PubMed  Google Scholar 

  22. Weil, D. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61 (1995)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. Wolfrum, U., Liu, X., Schmitt, A., Udovichenko, I. P. & Williams, D. S. Myosin VIIa as a common component of cilia and microvilli. Cell. Motil. Cytoskeleton 40, 261–271 (1998)

    CAS  Article  PubMed  Google Scholar 

  24. Lantz, V. A. & Miller, K. G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140, 897–910 (1998)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. Cao, T. T., Chang, W., Masters, S. E. & Mooseker, M. S. Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol. Biol. Cell 15, 151–161 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Sokac, A. M., Co, C., Taunton, J. & Bement, W. Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nature Cell Biol. 5, 727–732 (2003)

    CAS  Article  PubMed  Google Scholar 

  28. Mandato, C. A. & Bement, W. M. Actomyosin transports microtubules and microtubules control actomyosin recruitment during Xenopus oocyte wound healing. Curr. Biol. 13, 1096–1105 (2003)

    CAS  Article  PubMed  Google Scholar 

  29. Weber, K. L. & Bement, W. M. F-actin serves as a template for cytokeratin organization in cell free extracts. J. Cell Sci. 115, 1373–1382 (2002)

    CAS  PubMed  Google Scholar 

  30. Bement, W. M., Hasson, T., Wirth, J. A., Cheney, R. E. & Mooseker, M. S. Identification and overlapping expression of multiple unconventional myosin genes in vertebrate cell types. Proc. Natl Acad. Sci. USA 91, 6549–6553 (1994)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to G. Von Dassow and J. Canman for critical reading of this manuscript. This work was supported by grants from the National Institutes of Health to W.M.B. and R.E.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Bement.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Fig. S1

Complete amino acid sequence of XlMyo10. (DOC 21 kb)

Supplementary Fig. S2

Immunocolocalization of XlMyo10 is F-actin independent and specific. (JPG 34 kb)

Supplementary Fig. S3

Microtubule association of MyTH4-FERM constructs is F-actin independent. (JPG 22 kb)

Supplementary Fig. S4

Purification of GST-4F. (JPG 12 kb)

Supplementary Fig. S5

GFP-PH4F expression does not depolymerize microtubules. (JPG 70 kb)

Supplementary Fig. S6

GFP-PH4F targets to spindles. (JPG 19 kb)

Supplementary Fig. S7

GFP-PH4F disrupts meiotic spindle assembly. (JPG 36 kb)

Supplementary figure legends (DOC 24 kb)

Supplementary references (DOC 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, K., Sokac, A., Berg, J. et al. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329 (2004). https://doi.org/10.1038/nature02834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02834

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing