Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery of five irregular moons of Neptune


Each giant planet of the Solar System has two main types of moons. ‘Regular’ moons are typically larger satellites with prograde, nearly circular orbits in the equatorial plane of their host planets at distances of several to tens of planetary radii. The ‘irregular’ satellites (which are typically smaller) have larger orbits with significant eccentricities and inclinations. Despite these common features, Neptune's irregular satellite system, hitherto thought to consist of Triton and Nereid, has appeared unusual. Triton is as large as Pluto and is postulated to have been captured from heliocentric orbit; it traces a circular but retrograde orbit at 14 planetary radii from Neptune. Nereid, which exhibits one of the largest satellite eccentricities, is believed to have been scattered from a regular satellite orbit to its present orbit during Triton's capture1,2. Here we report the discovery of five irregular moons of Neptune, two with prograde and three with retrograde orbits. These exceedingly faint (apparent red magnitude mR = 24.2–25.4) moons, with diameters of 30 to 50 km, were presumably captured by Neptune.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Search regions.
Figure 2: Dynamical stability of neptunian moons.


  1. 1

    McKinnon, W. B. On the origin of Triton and Pluto. Nature 311, 355–358 (1984)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Goldreich, P., Murray, N., Longaretti, P.-Y. & Banfield, D. Neptune's story. Science 245, 500–504 (1989)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hogg, D. W. et al. A photographic search for satellites of Neptune. Icarus 107, 304–310 (1994)

    ADS  Article  Google Scholar 

  4. 4

    Gladman, B. J. et al. Discovery of two distant irregular moons of Uranus. Nature 392, 897–899 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Brown, M. J. I. & Webster, R. L. A search for distant satellites of Neptune. Publ. Astron. Soc. Austr. 15, 325–327 (1998)

    ADS  Article  Google Scholar 

  6. 6

    Gladman, B. et al. NOTE: The discovery of Uranus XIX, XX, and XXI. Icarus 147, 320–324 (2000)

    ADS  Article  Google Scholar 

  7. 7

    Sheppard, S. S. & Jewitt, D. C. An abundant population of small irregular satellites around Jupiter. Nature 423, 261–263 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gladman, B. et al. Discovery of 12 satellites of Saturn exhibiting orbital clustering. Nature 412, 163–166 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kavelaars, J. J. et al. The discovery of faint irregular satellites of Uranus. Icarus 169, 474–481 (2004)

    ADS  Article  Google Scholar 

  10. 10

    Hénon, M. Numerical exploration of the restricted problem. VI. Hill's case: non-periodic orbits. Astron. Astrophys. 9, 24–36 (1970)

    ADS  MATH  Google Scholar 

  11. 11

    Nesvorný, D., Alvarellos, J. L. A., Dones, L. & Levison, H. F. Orbital and collisional evolution of the irregular satellites. Astron. J. 126, 398–429 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Allen, R. L., Bernstein, G. M. & Malhotra, R. The edge of the solar system. Astrophys. J. 549, L241–L244 (2001)

    ADS  Article  Google Scholar 

  13. 13

    Landolt, A. U. UBVRI photometric standard stars in the magnitude range 11.5–16.0 around the celestial equator. Astron. J. 104, 340–371 (1992)

    ADS  Article  Google Scholar 

  14. 14

    Gladman, B., Kavelaars, J. J., Nicholson, P. D., Loredo, T. J. & Burns, J. A. Pencil-beam surveys for faint trans-neptunian objects. Astron. J. 116, 2042–2054 (1998)

    ADS  Article  Google Scholar 

  15. 15

    Alard, C. Image subtraction using a space-varying kernel. Astron. Astrophys. 144(Suppl.), 363–370 (2000)

    ADS  Google Scholar 

  16. 16

    Petit, J.-M., Holman, M., Scholl, H., Kavelaars, J. & Gladman, B. An automated moving object detection package. Mon. Not. R. Astron. Soc. 347, 471–480 (2004)

    ADS  Article  Google Scholar 

  17. 17

    Sheppard, S. S. et al. Satellites of Neptune. IAU Circ. No. 8193 (2003)

  18. 18

    Heppenheimer, T. A. & Porco, C. New contributions to the problem of capture. Icarus 30, 385–401 (1977)

    ADS  Article  Google Scholar 

  19. 19

    Ćuk, M. & Burns, J. A. Gas-drag-assisted capture of Himalia's family. Icarus 167 369–381 (2004)

    ADS  Article  Google Scholar 

  20. 20

    Colombo, G. & Franklin, F. A. On the formation of the outer satellite groups of Jupiter. Icarus 15, 186–189 (1971)

    ADS  Article  Google Scholar 

  21. 21

    Pollack, J. B., Burns, J. A. & Tauber, M. E. Gas drag in primordial circumplanetary envelopes—A mechanism for satellite capture. Icarus 37, 587–611 (1979)

    ADS  Article  Google Scholar 

  22. 22

    Astakhov, S. A., Burbanks, A. D., Wiggins, S. & Farrelly, D. Chaos-assisted capture of irregular moons. Nature 423, 264–267 (2003)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Goldreich, P., Lithwick, Y. & Sari, R. Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature 420, 643–646 (2002)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Wisdom, J. & Holman, M. Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991)

    ADS  Article  Google Scholar 

  25. 25

    Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26

    Carruba, V., Burns, J. A., Nicholson, P. D. & Gladman, B. J. On the inclination distribution of the jovian irregular satellites. Icarus 158, 434–449 (2002)

    ADS  Article  Google Scholar 

  27. 27

    Kessler, D. J. Derivation of the collision probability between orbiting objects: The lifetimes of Jupiter's outer moons. Icarus 48, 39–48 (1981)

    ADS  Article  Google Scholar 

  28. 28

    Grav, T., Holman, M. J., Gladman, B. J. & Aksnes, K. Photometric survey of the irregular satellites. Icarus 166, 33–45 (2003)

    ADS  Article  Google Scholar 

  29. 29

    Rettig, T. W., Walsh, K. & Consolmagno, G. Implied evolutionary differences of the jovian irregular satellites from a BVR color survey. Icarus 154, 313–320 (2001)

    ADS  Article  Google Scholar 

  30. 30

    Grav, T., Holman, M. J. & Fraser, W. Photometry of irregular satellites of Uranus and Neptune. Preprint astro-ph/0405605 at 〈〉 (2004).

Download references


We thank M. Lecar for discussions, and D. Trilling for observing assistance at Magellan. T. Abbott (CTIO) volunteered to observe during Director's Discretionary time. CTIO is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under a cooperative agreement with the National Science Foundation as part of the National Optical Astronomy Observatories. The CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii. The VLT is operated by the European Southern Observatory. This work was supported by NASA and the Smithsonian Institution.

Author information



Corresponding author

Correspondence to Matthew J. Holman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holman, M., Kavelaars, J., Grav, T. et al. Discovery of five irregular moons of Neptune. Nature 430, 865–867 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing