Role of fO_2 on fluid saturation in oceanic basalt

Arising from: A. E. Saal, E. H. Hauri, C. H. Langmuir & M. R. Perfit Nature 419, 451-455 (2002)

ssessing the conditions under which magmas become fluid-saturated has important bearings on the geochemical modelling of magmas because volatile exsolution may profoundly alter the behaviour of certain trace elements that are strongly partitioned in the coexisting fluid1. Saal et al.2 report primitive melt inclusions from dredged oceanic basalts of the Siqueiros transform fault, from which they derive volatile abundances of the depleted mantle, based on the demonstration that magmas are not fluid-saturated at their eruption depth and so preserve the mantle signature in terms of their volatile contents. However, in their analysis, Saal et al.² consider only fluid-melt equilibria, and do not take into account the homogeneous equilibria between fluid species, which, as we show here, may lead to a significant underestimation of the pressure depth of fluid saturation.

Earth science

For any basalt melt that is at fixed temperature and pressure in fluid-saturated conditions with known H₂O and CO₂ concentrations, the corresponding volatile fugacities, fH_2O and fCO_2 , can be calculated³. The phase rule states that this in turn fixes the fugacities of all other C-O-H fluid species, including fO_2 (ref. 4). Figure 1a shows the covariation of the mole fraction of H₂O and CO₂ (XH₂O and XCO₂) in a C–O–H fluid calculated for various fO_2 at 1,200 °C and 400 bar (fO2 expressed in log units relative to the solid buffer Ni-NiO, referred to here as NNO). It can be seen that at a very low mole fraction of H₂O $(XH_2O < 0.05)$, reduced fluids are poorer in CO₂ than oxidized ones: for instance, at $\Delta NNO = -2$ the mole fraction of CO₂ is 0.8, whereas at $\Delta NNO = -0.8$, it is 0.95. This is due to the progressive reduction of CO₂ into CO, which becomes significant at fO_2 below $\Delta NNO = -1$ (ref. 4).

Figure 1b shows the H₂O and CO₂ concentrations of basalt melts that coexist with fluids shown in Fig. 1a. Under oxidizing conditions ($fO_2 > \Delta NNO = -1$), the overall shape of the curve resembles the pattern of the curve when it is calculated by considering only fluid-melt equilibria². By contrast, for $fO_2 < \Delta NNO = -1$, the isobaric curve displays an asymmetric bell-shaped pattern characterized by a strong lowering of the melt CO2 content at low H2O. As already stated, this is the result of the reduction of CO₂ to CO at low fO_2 , CO being an insoluble species in silicate melts at low pressures⁵. The two curves merge at melt H₂O contents higher than 1 wt%, which shows that, for basalt melts with a higher meltwater content, the calculation of pressure for fluid saturation in the C-O-H system does not require an accurate knowledge of their redox state — unlike H_2O -poor basalts, such as oceanic basalts².

The fO_2 of primitive melt inclusions at Siqueiros is at present not well constrained but is estimated to be around $\Delta NNO = -2$ (ref. 2), which would fall at the upper end of the range of fO_2 estimated for mid-oceanridge basalt⁶ (MORB). However, given the general inverse correlation between fO_2 and

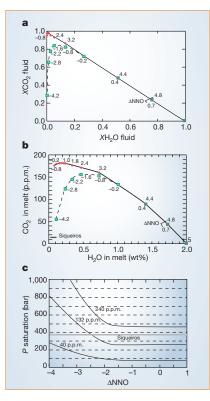


Figure 1 Effect of f02 on fluid speciation and fluid saturation in basalts. a, Covariation of XH2O and XCO2 (where Xi is the mole fraction of species i) in a C-O-H fluid calculated for various values of fO_2 (numbers along each curve). The calculations were done by fixing fH₂ (either 0.01 bar or 1 bar, corresponding to red and green symbols, respectively) and fH20, which allows us to calculate fCO₂ in the C-O-H system⁴. Once fH₂ and fH₂O are fixed, fO_2 can be calculated through the equilibrium H₂+0.5 $O_2 = H_2O$. *T*, 1,200 °C; *P*, 400 bar. **b**, H_2O-CO_2 solubility diagram for a basalt at 1,200 °C and 400 bar and equilibrated with fluid compositions shown in a. For any given fH20 and fC02 set of values, the corresponding H₂O and CO₂ contents of the melt are computed according to ref. 3. The fO_2 is shown along each line in log units calculated relative to the solid buffer Ni-NiO. The Siqueiros bar shows the range of H2O content of Siqueiros melt determined by Saal et al.2. c, Evolution of the pressure of fluid saturation with fO_2 of a basalt melt having 40, 132 and 240 p.p.m. CO2 and 0.1 wt% H2O, which are minimum, average and maximum CO2 contents, respectively, of the Siqueiros melt inclusions². At an fO_2 below $\Delta NNO = -1$, the pressure of saturation in fluid rises because of the continuous increase in CO of the coexisting gas phase. Grey horizontal line corresponds to the average collection pressure of Siqueiros basalts.

MgO of MORB documented worldwide⁶, the Siqueiros magmas would be expected near the lower end of the range (that is, Δ NNO = -3.5; ref. 6). The CO₂ contents of Siqueiros melt inclusions average at 132 ± 34 p.p.m. but range from 43 p.p.m. up to 243 p.p.m. (ref. 2).

Figure 1c shows the evolution of the pressure of fluid saturation with fO_2 of basalt melts having 40, 132 and 240 p.p.m. CO_2 and 0.1 wt% H₂O. It can be seen that, except for the lowest CO_2 contents, most melts would be fluid-saturated at their collection pressure for an $fO_2 < \Delta NNO = -2.5$. Considering the uncertainties associated with the determination of dissolved CO_2 in MORB glasses (\pm 15 p.p.m.) and with the redox state of Siqueiros magmas, we contend that the condition of fluid saturation before eruption cannot be disregarded for at least the most CO_2 -rich Siqueiros melt inclusions.

We note that this condition is in agreement with earlier findings showing that the redox state of oceanic basalts is compatible with mantle melting under fluid-present or graphite-saturated conditions^{7,8}. Therefore, although the variable CO_2 content of quenched oceanic basaltic glasses results from syneruptive degassing³, part of this variability may also reflect regional-to-local variations in fO_2 . In general, a quantitative modelling of volatiles' behaviour in MORB magmas will require explicit consideration of the role of fO_2 (ref. 9).

Bruno Scaillet*, Michel Pichavant

*ISTO-CNRS, UMR 6113, 45071 Orléans cedex 2, France

e-mail: bscaille@cnrs-orleans.fr

doi:10.1038/nature02814

- Wallace, P., Anderson, A. T. & Davis, A. M. *Nature* **377**, 612–616 (1995).
- Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Nature 419, 451–455 (2002).
- Dixon, J., Stolper, E. M. & Holloway, J. R. J. Petrol. 36, 1607–1631 (1995).
- Holloway, J. R. in *Reviews in Mineralogy* (eds Carmichael, I. S. E. & Eugster, H. P.) 17, 211–233 (Mineralogical Society of America. Book Crafters. Chelsea. Michiean. 1987).
- Pawley, A. R., Holloway, J. R. & McMillan, P. F. Earth Planet. Sci. Lett. 110, 213–225 (1992).
- Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Earth Planet. Sci. Lett. 79, 397–411 (1986).
- Blundy, J. D., Brodholt, J. P. & Wood, B. J. Nature 349, 321–324 (1991).
- 8. Holloway, J. R. Chem. Geol. 147, 89-97 (1998).
- 9. Mathez, E. Nature 310, 371-375 (1984).

Saal et al. reply — Scaillet and Pichavant¹ raise an important point about the role that fO_2 plays in determining C–H–O fluid speciation and in estimating the degree of vapour saturation in oceanic basalts. However, this does not seem to be relevant to the volatile geochemistry of mid-ocean-ridge basalt (MORB) magmas in general and of Siqueiros MORB in particular.

To address their comments, we should first mention that the compositions of the Siqueiros picritic glasses are representative

brief communications arising

of MORB. Their primitive composition does not indicate an unusually large extent of depletion compared with normal MORB, and indicates that they were not affected by the pervasive fractionation, mixing and aggregation processes taking place at the centre of the ridge segments^{2–4}.

The key factor in Scaillet and Pichavant's comment is the fO_2 of MORB. The authors incorrectly suggest that the Saal *et al.*⁴ estimation of the fO_2 of Siqueiros lavas falls at the upper range of the fO_2 estimated for MORB. Saal *et al.*⁴ calculated the fO_2 for Siquieros picritic glasses and melt inclusions as Δ NNO = $-1.7 \pm 0.5 (2\sigma)$, using the compositions of syngenetic chromium–spinel inclusions in olivine phenochrysts⁵. The fO_2 for MORB, ranging from Δ NNO = $-2.10 \pm 95 (2\sigma)$ (ref. 6) to Δ NNO = $-1.32 \pm 0.86 (2\sigma)$ (ref.7).

Our estimate of the fO_2 for Siqueiros samples, $\Delta NNO = -1.75$, is therefore a conservative value. Under these conditions ($\Delta NNO \ge -2$), the amount of CO existing with CO_2 is negligible (Fig. 1c of ref. 1). Furthermore, Scaillet and Pichavant¹ estimate an fO_2 of $\Delta NNO = -3.5$ for the Siqueiros samples, invoking a global correlation between Fe⁺³/ Σ Fe ratios and MgO content in MORB⁶. However, the existing data^{6,7} show no clear correlation, but variation in Fe⁺³/ Σ Fe ratios from 0.02 to 0.06 at any given MgO content.

The conclusions of Scaillet and Pichavant¹ also depend critically on the fugacity of molecular hydrogen (fH_2) in MORB and their discussion relies on an estimate for a high fH_2 in MORB (1 bar at 400 bars total pressure). Their Fig. 1a shows that similar calculations made with a lower fH_2 result in

no production of CO, and that the carbon speciation is dominated by CO_2 . Measurements of the composition of fluids trapped in MORB vesicles show that reduced vapour species (CO, H₂, CH₄) are typically less than 0.03–1 vol% of the total vapour, even at low water content^{8,9}. These measurements point to the very low abundance of reduced C–H species in the fluids that are in equilibrium with MORB, and indicate that the estimates of vapour-saturation pressure in Siqueiros MORB (and indeed, probably all MORB) are accurate.

Several other observations have not been addressed by Scaillet and Pichavant. First, their estimated vapour-saturation pressures at $fO_2 \Delta NNO < -2$ (Fig. 1c of ref. 1) assume a finite solubility for CO in basaltic melt, but in fact the solubility of CO in basalt has not been directly measured. As a result, even if a basaltic melt did have a significant CO content, it is not yet possible accurately to estimate the vapour-saturation pressure of basalt in the presence of a mixed CO–CO₂ fluid^{10,11}.

Second, if vapour exsolution from the Siqueiros magmas had been important, we would expect that lavas that underwent degassing would contain a large amount of vesicles. However, the very low (0–0.5 vol%) vesicularity of the Siqueiros host glasses is consistent with their range from nearly saturated to undersaturated in H_2O-CO_2 vapour at the pressure of eruption⁴.

Third, significant degassing of CO would have destroyed the observed correlation between CO₂, Nb and Cl contents in the Siqueiros samples⁴. CO₂–Nb–Cl correlations are very difficult to explain if degassing of CO was important in those samples. Furthermore, Siqueiros melt inclusions and host glasses have the highest CO₂/Nb ratios of all MORB analysed, even though MORB is generally supersaturated in H_2O-CO_2 at the depth of eruption (because the rate of cooling is faster than that of bubble nucleation)^{4,12}. The simplest explanation for the CO₂–Nb–Cl correlation and the high CO₂/Nb ratios for the Siqueiros samples is that the picritic glasses and inclusions are undegassed.

Finally, it is clear that in the case of the Siqueiros melt inclusions they were trapped at pressures higher than the pressure of eruption of the lavas. Therefore the 400-bars pressure used by Saal *et al.*⁴ is a minimum estimation of the pressure of entrapment. If the inclusions were trapped at a pressure higher than 400 bars, their dissolved volatile contents would be lower than those required to saturate a basaltic melt in H_2O-CO_2 vapour.

Alberto E. Saal*, Erik H. Hauri,

Charles H. Langmuir, Michael R. Perfit

*Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, USA e-mail: asaal@brown.edu

doi:10.1038/nature02815

- 1. Scaillet, B. & Pichavant, M. Nature doi:10.1038/nature02814 (2004).
- Perfit, M. R. et al. Earth Planet. Sci. Lett. 141, 91–108 (1996).
 Sims, K. W. et al. Geochem. Cosmochim. Acta 66, 3481–3504 (2002).
- Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Nature 419, 451–455 (2002).
- Danyushevsky, L. & Sobolev, A. V. Mineral. Petrol. 57, 229–241 (1996).
- Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Earth Planet. Sci. Lett. 79, 397–411 (1986).
- Bezos, A. & Humler, E. Geochem. Cosmochim. Acta (in the press).
- Javoy, M. & Pineau, F. Earth Planet. Sci. Lett. 107, 598–611 (1991).
- Cartigny, P., Jendrzejewski, N., Pineau, F., Petit, E. & Javoy, M. Earth Planet. Sci. Lett. 194, 241–257 (2001).
- 10. Pawley, A. R., Holloway, J. R. & McMillan, P. F. Earth Planet. Sci. Lett. 110, 213–225 (1992).
- 11. Holloway, J. R. Chem. Geol. 147, 89-97 (1998).
- 12. Dixon, J. E. & Stolper, E. M. J. Petrol. 36, 1633-1646 (1995).