High-resolution record of Northern Hemisphere climate extending into the last interglacial period

Abstract

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 °C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Map of Greenland, showing the locations of the deep ice core drilling sites.
Figure 2: The NGRIP stable oxygen isotopic record compared to the GRIP record.
Figure 3: Comparison of ice core records from NGRIP and Vostok for NGRIP depths 2,830 to 3,085 m.
Figure 4: The NGRIP isotopic profile from the Supplementary Information (a) compared with the planktonic isotopes in the Iberian margin sediment core MD95-202429 (b).

References

  1. 1

    Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992)

    ADS  Article  Google Scholar 

  2. 2

    Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993)

    ADS  Article  Google Scholar 

  3. 3

    Greenland Ice-Core Project (GRIP) Members. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203–208 (1993)

    ADS  Article  Google Scholar 

  4. 4

    Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Taylor, K. C. et al. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366, 549–552 (1993)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bender, M. et al. Climate correlations between Greenland and Antarctica during the last 100,000 years. Nature 372, 663–666 (1994)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Fuchs, A. & Leuenberger, M. δ18O of atmospheric oxygen measured on the GRIP Ice Core document stratigraphic disturbances in the lowest 10% of the core. Geophys. Res. Lett. 23, 1049–1052 (1996)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. 102, 26397–26410 (1997)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Chappellaz, J., Brook, E., Blunier, T. & Malaizé, B. CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and Greenland Ice Sheet Project 2 ice cores. J. Geophys. Res. 102, 26547–26557 (1997)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Dahl-Jensen, D. et al. The NorthGRIP deep drilling program. Ann. Glaciol. 35, 1–4 (2002)

    ADS  Article  Google Scholar 

  11. 11

    Dahl-Jensen, D. et al. A search in north Greenland for a new ice-core drill site. J. Glaciol. 43, 300–306 (1997)

    ADS  Article  Google Scholar 

  12. 12

    Dahl-Jensen, D., Gundestrup, N., Gorgineni, P. & Miller, H. Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol. 37, 207–212 (2003)

    ADS  Article  Google Scholar 

  13. 13

    Alley, R. B. et al. Comparison of deep ice cores. Nature 373, 393–394 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Grinsted, A. & Dahl-Jensen, D. A Monte Carlo-tuned model of the flow in the NorthGRIP area. Ann. Glaciol. 35, 527–530 (2002)

    ADS  Article  Google Scholar 

  15. 15

    Johnsen, S. J. et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16, 299–307 (2001)

    Article  Google Scholar 

  16. 16

    Clausen, H. B. et al. A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye3 Greenland ice cores. J. Geophys. Res. 102, 26707–26723 (1997)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Blunier, T. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Landais, A. et al. A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core. J. Geophys. Res. 108, doi:10.1029/2002JD0003147 (2003)

  19. 19

    Flückiger, J. et al. N2O and CH4 variations during the last glacial epoch: Insight into global processes. Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002122 (2004)

  20. 20

    Suwa, M., von Fischer, J. & Bender, M. Age reconstruction for the bottom part of the GISP2 ice core based on trapped methane and oxygen isotopes records. Geophys. Res. Abstr. 5, 07811 (2003)

    Google Scholar 

  21. 21

    Caillon, N. et al. Estimation of temperature change and of gas age-ice age difference, 108 kyr BP, at Vostok, Antarctica. J. Geophys. Res. 106, 31893–31901 (2001)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, doi:10.1029/2003PA000920 (2003)

  24. 24

    Caillon, N., Jouzel, J., Severinghaus, J. P., Chappellaz, J. & Blunier, T. A novel method to study the phase relationship between Antarctic and Greenland climate. Geophys. Res. Lett. 30, doi:10.1029/2003GL017838 (2003)

  25. 25

    Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Young Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Chappellaz, J. et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 (1993)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Brook, E. J., Sowers, T. & Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1091 (1996)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Schwander, J. et al. Age scale of the air in the Summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483–19493 (1997)

    ADS  Article  Google Scholar 

  29. 29

    Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 565–569 (2000)

    ADS  Article  Google Scholar 

  30. 30

    Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594 (2000)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Johnsen, S., Dahl-Jensen, D., Dansgaard, W. & Gundestrup, N. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B 47, 624–629 (1995)

    ADS  Article  Google Scholar 

  32. 32

    Cuffey, K. M. et al. Large arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Bennike, O. & Boecher, J. Land biotas of the last interglacial/glacial cycle, Jameson Land, East Greenland. Boreas 23, 479–488 (1994)

    Article  Google Scholar 

  34. 34

    Marshall, S. J. & Cuffey, K. M. Peregrinations of the Greenland Ice Sheet divide in the last glacial cycle: Implications for central Greenland ice cores. Earth Planet. Sci. Lett. 179, 73–90 (2000)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231 (2002)

    ADS  Article  Google Scholar 

  36. 36

    Gregory, J. M., Huybrechts, P. & Raper, S. C. B. Threatened loss of the Greenland ice-sheet. Nature 428, 616 (2004)

    ADS  CAS  Article  Google Scholar 

  37. 37

    McManus, J. F., Oppo, D. W., Keigwin, L. D., Cullen, J. L. & Bond, G. C. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quat. Res. 58, 17–21 (2002)

    Article  Google Scholar 

  38. 38

    Khodri, M. et al. Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–573 (2001)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Res. 21, 295–305 (2002)

    ADS  Article  Google Scholar 

  40. 40

    Reeh, N., Oerter, H. & Thomsen, H. H. Comparison between Greenland ice-margin and ice-core oxygen-18 records. Ann. Glaciol. 35, 136–144 (2002)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Watanabe, O. et al. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature 422, 509–512 (2003)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Charles, C. D., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Seasonal precipitation timing and ice core records. Science 269, 247–248 (1995)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Charles, C. D., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Glacial-interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate. Science 263, 508–511 (1994)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Dawes, P. R. in Geology of Greenland (eds Escher, A. & Watt, W. S.) 248–303 (The Geological Survey of Greenland, Denmark, 1976)

    Google Scholar 

  45. 45

    Petit, J. R., Alekhina, I. & Bulat, S. A. in Lessons for Exobiology (ed. Gargaud, M.) (Springer, in the press)

  46. 46

    Letréguilly, A., Huybrechts, P. & Reeh, N. Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol. 37, 149–157 (1991)

    ADS  Article  Google Scholar 

  47. 47

    Letréguilly, A., Reeh, N. & Huybrechts, P. The Greenland ice sheet through the last glacial-interglacial cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 90, 385–394 (1991)

    Article  Google Scholar 

  48. 48

    Kukla, G., McManus, J. F., Rousseau, D.-D. & Chuine, I. How long and how stable was the Last Interglacial? Quat. Sci. Rev. 16, 605–612 (1997)

    ADS  Article  Google Scholar 

  49. 49

    Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. & Cogineni, P. High geothermal heat flow basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338–2342 (2001)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Fahnestock, M. A. et al. Ice-stream-related patterns of ice flow in the interior of northeast Greenland. J. Geophys. Res. 106, 34035–34045 (2001)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

NGRIP is directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen. It is supported by funding agencies in Denmark (SNF), Belgium (FNRS-CFB), France (IPEV and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MEXT), Sweden (SPRS), Switzerland (SNF) and the USA (NSF, Office of Polar Programs).

Correspondence and requests for materials should be addressed to D.D.-J. (ddj@gfy.ku.dk) or S.J.J. (sigfus@gfy.ku.dk).

Author information

Affiliations

Consortia

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

In this file we list the NGRIP oxygen 18 values as 50 year mean values using the same preliminary age scale as in Figure 2c of the accompanying paper. (XLS 270 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andersen, K., Azuma, N., Barnola, J. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004). https://doi.org/10.1038/nature02805

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing