
a C. hPoli incorporates a C opposite this lesion as efficiently as
opposite an undamaged G, thereby providing an effective means for
replication through such minor-groove adducts24. A

Methods
Protein and DNA preparation
The glutathione S-transferase (GST) and hPoli (residues 1–420) fusion protein was
expressed in yeast strain BJ5464 from plasmid pBJ941, and then purified and cleaved as
described for yeast Polh13. To prepare selenomethionine (SeMet)-labelled hPoli, we
expressed plasmid pBJ1066 in Escherichia coli strain B834, which is auxotrophic for
methionine, and grew the cells in M9 minimal medium. The primer was synthesized as 12-
and 13-nucleotide oligonucleotides, with the latter containing a dideoxycytosine at its 3

0

end (5 0 -GGGGGAAGGACCCdd-3 0 ). These were annealed with an 18-nucleotide template
(5 0 -TTCTAGGGTCCTTCCCCC-3 0 ) to yield 12/18 and 13/18 primer templates. The
template was also synthesized with three thymines substituted by 5-bromouracil
(5 0 -TTCAAGGGUBrCCUBrUBrCCCCC-3 0 ), and then annealed with the 13-nucleotide
primer to yield a 13/18(Br) primer template.

Cocrystallization
We obtained three different cocrystals: SeMet, Native1 and Native2. SeMet cocrystals were
obtained by incubating SeMet hPoli with the 12/18 primer template in a molar ratio of
1:1.2, plus 5 mM ddTTP and 5 mM MgCl2. Native1 cocrystals were obtained by mixing
native hPoli with the 13/18 primer template plus 5 mM ddTTP and 5 mM MgCl2. The
Native2 cocrystals were obtained by incubating native hPoli with the 13/18(Br) primer
template plus 15 mM dTTP and 5 mM MgCl2. For each, the complex was crystallized from
solutions containing 10–15% PEG 5000 MME and 0.2–0.4 M (NH4)2SO4 in 0.1 M MES
buffer (pH 6.5). The three cocrystals belong to the space group P65, with identical cell
dimensions of a ¼ 98.5 Å, b ¼ 98.5 Å, c ¼ 203.7 Å and a ¼ b ¼ 908, g ¼ 1208.

Structure determination
Multiwavelength anomalous diffraction (MAD) data on cryo-cooled SeMet cocrystals
(2.6 Å) were measured at the Advanced Photon Source (APS, beamline 14-ID) at three
wavelengths, corresponding to the edge and peak of the Se K edge absorption profile plus a
remote point (Supplementary Table 1). The Native1 and Native2 data were also measured
at the APS at beamlines 14-ID (2.1 Å) and 17-ID (2.3 Å), respectively. We found the
positions of nine selenium atoms from the SeMet data using the program SOLVE25. The
initial experimental phases (2.8 Å) from these selenium positions were applied to Native1
data, and then extended to 2.1 Å with solvent flattening by the program CNS26. This
yielded a readily interpretable electron density map that was used to build the initial
complex. Unexpectedly, two hPoli molecules were bound to the DNA, related by a pseudo-
dyad axis perpendicular to the DNA axis. The two hPoli molecules were built
independently and refined, but there was no density for the incoming nucleotide.

The Native1 structure was used as a molecular replacement model to phase the Native2
complex (crystallized with brominated DNA and dTTP instead of ddTTP) with the
program AmoRe27. The Native2 structure showed clear electron density for the incoming
dTTP. Anomalous difference Fourier maps revealed six bromine peaks, suggesting that the
complex packed in two orientations in the crystal. The Native2 structure was refined in
two orientations with CNS, with the bromine atoms helping to fix the register of the DNA.
After iterative rounds of refinement, model building with program O28 and water picking,
the R free dropped to 28.6%. The final Native2 model includes residues 27–414 for
molecules A and B, DNA (electron density for four of the five unpaired template residues
towards the 5 0 end was not visible), dTTP and 438 water molecules. The model has good
stereochemistry: 82% of the residues are in the most favoured regions of a Ramachandran
plot and only 0.5% are in the disallowed regions.
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