Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for redox regulation of Yap1 transcription factor localization

Abstract

The ability of organisms to alter their gene expression patterns in response to environmental changes is essential for viability. A central regulator of the response to oxidative stress in Saccharomyces cerevisiae is the Yap1 transcription factor. Upon activation by increased levels of reactive oxygen species, Yap1 rapidly redistributes to the nucleus where it regulates the expression of up to 70 genes1,2,3. Here we identify a redox-regulated domain of Yap1 and determine its high-resolution solution structure. In the active oxidized form, a nuclear export signal (NES) in the carboxy-terminal cysteine-rich domain is masked by disulphide-bond-mediated interactions with a conserved amino-terminal α-helix. Point mutations that weaken the hydrophobic interactions between the N-terminal α-helix and the C-terminal NES-containing domain abolished redox-regulated changes in subcellular localization of Yap1. Upon reduction of the disulphide bonds, Yap1 undergoes a change to an unstructured conformation that exposes the NES and allows redistribution to the cytoplasm. These results reveal the structural basis of redox-dependent Yap1 localization and provide a previously unknown mechanism of transcription factor regulation by reversible intramolecular disulphide bond formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic Yap1 structures and in vivo analysis of Yap1-RDGFP subcellular localization and oxidation.
Figure 2: Structural characterization of oxidized Yap1-RD.
Figure 3: Inhibition of the Yap1 NES by the n-α1 helix.
Figure 4: Redox-mediated conformational changes in Yap1-RD.

Similar content being viewed by others

References

  1. Kuge, S., Jones, N. & Nomoto, A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16, 1710–1720 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Godon, C. et al. The H2O2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480–22489 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yan, C., Lee, L. H. & Davis, L. I. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J. 17, 7416–7429 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Isoyama, T., Murayama, A., Nomoto, A. & Kuge, S. Nuclear import of the yeast AP-1-like transcription factor Yap1p is mediated by transport receptor Pse1p, and this import step is not affected by oxidative stress. J. Biol. Chem. 276, 21863–21869 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Coleman, S. T., Epping, E. A., Steggerda, S. M. & Moye-Rowley, W. S. Yap1p activates gene transcription in an oxidant-specific fashion. Mol. Cell. Biol. 19, 8302–8313 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood, M. J., Andrade, E. C. & Storz, G. The redox domain of the Yap1p transcription factor contains two disulfide bonds. Biochemistry 42, 11982–11991 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Delaunay, A., Isnard, A. D. & Toledano, M. B. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19, 5157–5166 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delaunay, A., Pflieger, D., Barrault, M. B., Vinh, J. & Toledano, M. B. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Demarest, S. J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Graumann, J. et al. Activation of the redox-regulated molecular chaperone Hsp33–a two-step mechanism. Structure (Camb) 9, 377–387 (2001)

    Article  CAS  Google Scholar 

  13. Vijayalakshmi, J., Mukhergee, M. K., Graumann, J., Jakob, U. & Saper, M. A. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity. Structure (Camb) 9, 367–375 (2001)

    Article  CAS  Google Scholar 

  14. Kaffman, A. & O'Shea, E. K. Regulation of nuclear localization: a key to a door. Annu. Rev. Cell Dev. Biol. 15, 291–339 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Kau, T. R., Way, J. C. & Silver, P. A. Nuclear transport and cancer: from mechanism to intervention. Nature Rev. Cancer 4, 106–117 (2004)

    Article  CAS  Google Scholar 

  16. Zhu, J. et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Clore, G. M. et al. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265, 386–391 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, P. W., Sun, Z. Y., Blacklow, S. C., Wagner, G. & Eck, M. J. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 301, 1725–1728 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  PubMed  Google Scholar 

  23. Garrett, D. S., Powers, R., Gronenborn, A. M. & Clore, G. M. A common-sense approach to peak picking in 2-dimensional, 3-dimensional, and 4-dimensional spectra using automatic computer-analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991)

    ADS  CAS  Google Scholar 

  24. Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. Cavanagh, J., Fairbrother, W. J., Palmer, A. G. & Skelton, N. J. Protein NMR Spectroscopy: Principles and Practice (Academic, San Diego, 1995)

    Google Scholar 

  26. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Hansen, M. R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nature Struct. Biol. 5, 1065–1074 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Tjandra, N., Omichinski, J. G., Gronenborn, A. M., Clore, G. M. & Bax, A. Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nature Struct. Biol. 4, 732–738 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Andrade for preparing the Yap1-RD expression construct, S. Moye-Rowley for providing reagents, C. Jackson for suggestions, C. Wu for use of the mass spectrometer and C. A. Combs for his expertise and advice regarding microscopy-related experiments. We also thank A. Gronenborn, R. Hegde, E. Komives, E. Korn, S. Moye-Rowley and W. Outten for critical reading of this manuscript. M.J.W. is supported by a Research Associateship from the National Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gisela Storz or Nico Tjandra.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

In vivo analysis of full length wild-type GFP-Yap1 and Phe302A, Met306A and Val309A mutant derivatives. (DOC 395 kb)

Supplementary Table 1

Yap1-RD NMR structure determination statistics. (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, M., Storz, G. & Tjandra, N. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430, 917–921 (2004). https://doi.org/10.1038/nature02790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02790

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing