Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation

Abstract

The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean–atmosphere–sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Temperature response to three scenarios of freshwater discharge into the North Atlantic.
Figure 2: The ocean response to freshwater discharge into the North Atlantic. F1.0 and F0.5 denote 1.0 Sv and 0.5 Sv sustained freshwater discharge, respectively.
Figure 3: Time evolution of the THC and global sea level and corresponding changes in polar near-surface air temperature in an illustrative scenario of freshwater discharge into the North Atlantic.
Figure 4: Temperature and precipitation changes simulated for two stadial–interstadial transitions.
Figure 5: Variability of Greenland and Antarctic temperature and sea-level proxy data (grey, right axes) explained by a conceptual model (black, left axes).

References

  1. Voelker, A. H. L. & workshop participants. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: A database. Quat. Sci. Rev. 21, 1185–1212 (2002)

    ADS  Article  Google Scholar 

  2. Dansgaard, W. et al. Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 364, 218–220 (1993)

    ADS  Article  Google Scholar 

  3. Schwander, J. et al. Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483–19494 (1997)

    ADS  Article  Google Scholar 

  4. Lang, C., Leuenberger, M., Schwander, J. & Johnsen, S. 16°C rapid temperature variation in central Greenland 70,000 years ago. Science 286, 934–937 (1999)

    CAS  Article  Google Scholar 

  5. Severinghaus, J. P. & Brook, E. J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286, 930–934 (1999)

    CAS  Article  Google Scholar 

  6. Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152 (1988)

    Article  Google Scholar 

  7. Hemming, S. R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42 (2004) doi:10.1029/2003RG000128

  8. Blunier, T. & Brook, E. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001)

    ADS  CAS  Article  Google Scholar 

  9. Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial scale events 64,000 to 24,000 years ago. Paleoceanography 15, 565–569 (2000)

    ADS  Article  Google Scholar 

  10. Yokoyama, Y., Esat, T. M. & Lambeck, K. Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age. Earth Planet. Sci. Lett. 193, 579–587 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Chappell, J. Sea level changes forced ice breakouts in the last glacial cycle: New results from coral terraces. Quat. Sci. Rev. 21, 1229–1240 (2002)

    ADS  Article  Google Scholar 

  12. Siddall, M. et al. Sea-level fluctuation during the last glacial cycle. Nature 423, 853–858 (2003)

    ADS  CAS  Article  Google Scholar 

  13. Clark, P. U., Webb, R. S. & Keigwin, L. D. (eds) Mechanisms of Global Climate Change at Millennial Time Scales 1–394 (AGU, Washington DC, 1999)

  14. Stocker, T. F. & Marchal, O. Abrupt climate change in the computer: Is it real? Proc. Natl Acad. Sci. USA 97, 1362–1365 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002)

    ADS  CAS  Article  Google Scholar 

  16. Crowley, T. J. North Atlantic deep water cools the southern hemisphere. Paleoceanography 7, 489–497 (1992)

    ADS  Article  Google Scholar 

  17. Stocker, T. F. The seesaw effect. Science 282, 61–62 (1998)

    CAS  Article  Google Scholar 

  18. Broecker, W. S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography 13, 119–121 (1998)

    ADS  Article  Google Scholar 

  19. Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001)

    ADS  CAS  Article  Google Scholar 

  20. Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, doi:10.1029/2003PA000920 (2003)

  21. Stocker, T. F. & Wright, D. G. Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes. Nature 351, 729–732 (1991)

    ADS  Article  Google Scholar 

  22. Mikolajewicz, U. & Maier-Reimer, E. Mixed boundary conditions in ocean general-circulation models and their influence on the stability of the models conveyor belt. J. Geophys. Res. 99, 22633–22644 (1994)

    ADS  Article  Google Scholar 

  23. Rahmstorf, S. Rapid climate transitions in a coupled ocean–atmosphere model. Nature 372, 82–85 (1994)

    ADS  CAS  Article  Google Scholar 

  24. Schmittner, A., Yoshimori, M. & Weaver, A. J. Instability of glacial climate in a model of the ocean-atmosphere-cryosphere system. Science 295, 1489–1493 (2002)

    ADS  CAS  Article  Google Scholar 

  25. Jouzel, J. et al. Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. J. Geophys. Res. 108, doi:10.1029/2003JD002677 (2003)

  26. Blunier, T., Schwander, J., Chappellaz, J., Parrenin, F. & Barnola, J.-M. What was the surface temperature in central Antarctica during the last glacial maximum? Earth Planet. Sci. Lett. 218, 379–388 (2004)

    ADS  CAS  Article  Google Scholar 

  27. Stenni, B. et al. A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica). Earth Planet. Sci. Lett. 217, 183–195 (2003)

    ADS  Article  Google Scholar 

  28. Johnsen, S. J., Dansgaard, W., Clausen, H. B. & Langway, C. C. Jr Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235, 429–434 (1972)

    ADS  CAS  Article  Google Scholar 

  29. Opsteegh, J. D., Haarsma, R. J.,, Selten, F. M. & Kattenberg, A. ECBILT: A dynamic alternative to mixed boundary conditions in ocean models. Tellus A 50, 348–367 (1998)

    ADS  Article  Google Scholar 

  30. Goosse, H. & Fichefet, T. Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res. 104, 23337–23355 (1999)

    ADS  Article  Google Scholar 

  31. Stocker, T. F., Wright, D. G. & Broecker, W. S. The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography 7, 529–541 (1992)

    ADS  Article  Google Scholar 

  32. Schiller, A., Mikolajewicz, U. & Voss, R. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim. Dyn. 13, 325–348 (1997)

    Article  Google Scholar 

  33. Manabe, S. & Stouffer, R. J. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography 12, 321–336 (1997)

    ADS  Article  Google Scholar 

  34. Huang, R. X., Cane, M. A., Naik, N. & Goodman, P. Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett. 27, 759–762 (2000)

    ADS  Article  Google Scholar 

  35. Hsieh, W., Davey, M. K. & Wajsiwicz, C. The free Kelvin wave in finite-difference models. J. Phys. Oceanogr. 13, 1383–1397 (1983)

    ADS  Article  Google Scholar 

  36. Johnson, H. & Marshall, D. P. A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr. 32, 1121–1132 (2002)

    ADS  Article  Google Scholar 

  37. Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999)

    ADS  CAS  Article  Google Scholar 

  38. Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001)

    ADS  CAS  Article  Google Scholar 

  39. Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. & Al-Subbary, A. A. Indian ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 1365–1367 (2003)

    ADS  CAS  Article  Google Scholar 

  40. Peterson, L. C., Haug, G. H., Hughen, K. A. & Röhl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000)

    ADS  CAS  Article  Google Scholar 

  41. Steig, E. J. et al. Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 92–95 (1998)

    ADS  CAS  Article  Google Scholar 

  42. Mulvaney, R. et al. The transition from the last glacial period in inland and near-coastal Antatctica. Geophys. Res. Lett. 27, 2673–2676 (2000)

    ADS  Article  Google Scholar 

  43. Kanfoush, S. L. et al. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science 288, 1815–1818 (2000)

    ADS  CAS  Article  Google Scholar 

  44. Weaver, A. J., Saenko, O. A., Clark, P. U. & Mitrovica, J. X. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299, 1709–1713 (2003)

    ADS  CAS  Article  Google Scholar 

  45. Wunsch, C. Greenland-Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores. Quat. Sci. Rev. 22, 1631–1646 (2003)

    ADS  Article  Google Scholar 

  46. Roe, G. H. & Steig, E. J. Characterization of millennial-scale climate variability. J. Clim. 17, 1929–1944 (2004)

    ADS  Article  Google Scholar 

  47. Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278, 1582–1588 (1997)

    ADS  CAS  Article  Google Scholar 

  48. Timmermann, A., Justino, F. B. & Jin, F.-F. Surface temperature control in the north and tropical Pacific during the last glacial maximum. Clim. Dyn. (in the press)

  49. IPCC. Climate Change: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge/New York, 2001)

    Google Scholar 

  50. Enting, I. G. On the use of smoothing splines to filter CO2 data. J. Geophys. Res. 92, 10977–10984 (1987)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the model developers and KNMI for making ECBILT-CLIO available to the scientific community, to F. Justino and U. Krebs for setting-up the glacial version of the model, and to N. Shackleton for discussions. This work was supported by the Swiss National Science Foundation, the Swiss Federal Office of Science and Education through the EC project POP and the University of Bern. A.T. was supported by the Deutsche Forschungsgemeinschaft through a Collaborative Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Knutti.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Sensitivity of the CGAOM to glacial boundary conditions. (PDF 90 kb)

Supplementary Figure 1 Legend

Sensitivity of the CGAOM to glacial boundary conditions. (DOC 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knutti, R., Flückiger, J., Stocker, T. et al. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430, 851–856 (2004). https://doi.org/10.1038/nature02786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02786

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing