Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomic analysis of regulatory network dynamics reveals large topological changes

Abstract

Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically1,2,3,4,5,6,7,8. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information9,10,11 and gene-expression data12,13,14,15,16 for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here—particularly the large-scale topological changes and hub transience—will apply to other biological networks, including complex sub-systems in higher eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic representation of the transcriptional regulatory network and standard statistics.
Figure 2: Newly derived ‘follow-on’ statistics for network structures.
Figure 3: Transcription factor inter-regulation during the cell cycle time-course.

Similar content being viewed by others

References

  1. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F. Topological and causal structure of the yeast transcriptional regulatory network. Nature Genet. 31, 60–63 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Oltvai, Z. N. & Barabasi, A. L. Systems biology. Life's complexity pyramid. Science 298, 763–764 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Teichmann, S. A. & Babu, M. M. Gene regulatory network growth by duplication. Nature Genet. 36, 492–496 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Svetlov, V. V. & Cooper, T. G. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 11, 1439–1484 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Horak, C. E. et al. Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev. 16, 3017–3033 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gasch, A. P. et al. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12, 2987–3003 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Odom, D. T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeitlinger, J. et al. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wagner, A. & Fell, D. A. The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268, 1803–1810 (2001)

    Article  CAS  Google Scholar 

  21. Yu, H., Greenbaum, D., Xin Lu, H., Zhu, X. & Gerstein, M. Genomic analysis of essentiality within protein networks. Trends Genet. 20, 227–231 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Antonio, A. & Collado-Vides, J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol. 6, 82–489 (2003)

    Article  Google Scholar 

  23. Madan Babu, M. & Teichmann, S. A. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res. 31, 1234–1244 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153–159 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yu, H., Zhu, X., Greenbaum, D., Karro, J. & Gerstein, M. TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. Nucleic Acids Res. 32, 328–337 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Christie, K. R. et al. Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res. 32, D311–D314 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Bertone, N. Domedel-Puig, E. Hovig, R. Jansen, K. Kleivi, G. Koentges, E. Koonin, B. Lenhard, A. Paccanaro, J. Rozowsky, J. Tegner, V. Trifonov, A. Todd, Y. Xia and H. Zao for comments on the paper. N.M.L. thanks the Anna Fuller Fund and the MRC LMB Visitor's Program. M.M.B. acknowledges financial support from the Cambridge Commonwealth Trust, Trinity College, Cambridge and the MRC LMB. M.G. is supported by the NSF and NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas M. Luscombe, M. Madan Babu, Sarah A. Teichmann or Mark Gerstein.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Material

New Text: Subheadings 1-8, including 2 figures (PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luscombe, N., Madan Babu, M., Yu, H. et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004). https://doi.org/10.1038/nature02782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02782

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing