Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variable ageing and storage of dissolved organic components in the open ocean

Abstract

Seawater dissolved organic matter (DOM) is the largest reservoir of exchangeable organic carbon in the ocean, comparable in quantity to atmospheric carbon dioxide1,2. The composition, turnover times and fate of all but a few planktonic constituents of this material are, however, largely unknown3,4. Models of ocean carbon cycling are thus limited by the need for information on temporal scales of carbon storage in DOM subcomponents, produced via the ‘biological pump’, relative to their recycling by bacteria3,4. Here we show that carbohydrate- and protein-like substances in the open Atlantic and Pacific oceans, though often significantly aged, comprise younger fractions of the DOM, whereas dissolved lipophilic material exhibits up to 90 per cent fossil character. In contrast to the millennial mean ages of DOM observed throughout the water column, weighted mean turnover times of DOM in the surface ocean are only decadal in magnitude. An observed size–age continuum further demonstrates that small dissolved molecules are the most highly aged forms of organic matter, cycling much more slowly than larger, younger dissolved and particulate precursors, and directly links oceanic organic matter age and size with reactivity3,5.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isotopic signatures of dissolved organic fractions relative to DOMHMW.
Figure 2: Δ14C versus δ13C for dissolved organic fractions, DOMHMW, and DOMLMW.

Similar content being viewed by others

References

  1. Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic carbon in the central North Pacific Ocean. Nature 330, 246–248 (1987)

    Article  ADS  CAS  Google Scholar 

  2. Hedges, J. I. Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 67–93 (1992)

    Article  CAS  Google Scholar 

  3. Amon, R. M. W. & Benner, R. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41, 41–51 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Carlson, C. A. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 91–151 (Academic, Orlando, USA, 2002)

    Book  Google Scholar 

  5. Benner, R. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 59–90 (Academic, Orlando, USA, 2002)

    Book  Google Scholar 

  6. Bauer, J. E., Williams, P. M. & Druffel, E. R. M. 14C activity of dissolved organic carbon fractions in the north central Pacific and Sargasso Sea. Nature 357, 667–670 (1992)

    Article  ADS  CAS  Google Scholar 

  7. Druffel, E. R. M., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97, 15639–15659 (1992)

    Article  ADS  CAS  Google Scholar 

  8. Stuiver, M., Quay, P. D. & Ostlund, H. G. Abyssal water 14C distribution and the age of the world oceans. Science 219, 849–851 (1983)

    Article  ADS  CAS  Google Scholar 

  9. Eglinton, T. I. et al. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem. Geophys. Geosyst. 3, doi:10.1029/2001GC000269 (2002)

  10. Goericke, R., Montoya, J. P. & Fry, B. in Stable Isotopes in Ecology and Environmental Science (eds Lajtha, K. & Michener, R. H.) 181–221 (Blackwell Scientific Publications, Oxford, UK, 1994)

    Google Scholar 

  11. Eglinton, T. I. et al. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277, 796–799 (1997)

    Article  CAS  Google Scholar 

  12. Loh, A. N. Chemical, Isotopic and Microbial Characterization of Dissolved and Particulate Organic Matter in Estuarine, Coastal and Open Ocean Systems. Doctoral dissertation, College of William and Mary (2002)

    Google Scholar 

  13. Wang, X.-C., Druffel, E. R. M., Griffin, S., Lee, C. & Kashgarian, M. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean. Geochim. Cosmochim. Acta 62, 1365–1378 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Hwang, J. & Druffel, E. R. M. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science 299, 881–884 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Wakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L. & Hernes, P. J. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep-Sea Res. II 44, 2131–2162 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Aluwihare, L. I., Repeta, D. J. & Chen, R. F. Chemical composition and cycling of dissolved organic matter in the mid-Atlantic bight. Deep-Sea Res. II 49, 4421–4437 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Hedges, J. I. et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958 (2000)

    Article  CAS  Google Scholar 

  18. Aluwihare, L. I., Repeta, D. J. & Chen, R. F. A major biopolymeric component to dissolved organic carbon in surface seawater. Nature 387, 166–169 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Santschi, P. H. et al. Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments. Geochim. Cosmochim. Acta 59, 625–631 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Druffel, E. R. M., Bauer, J. E., Griffin, S. & Hwang, J. Penetration of anthropogenic carbon into organic particles of the deep ocean. Geophys. Res. Lett. 30, doi:10.1029/2003GL017423 (2003)

  21. Clark, L. L., Ingall, E. D. & Benner, R. Marine phosphorus is selectively remineralised. Nature 393, 426 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Wang, X.-C., Chen, R. F., Whelan, J. & Eglinton, L. Contribution of “old” carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico. Geophys. Res. Lett. 28, 3313–3316 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995)

    Article  CAS  Google Scholar 

  25. Trumbore, S. E. & Druffel, E. R. M. in The Role of Nonliving Organic Matter in the Earth's Carbon Cycle (eds Zepp, R. G. & Sonntag, Ch.) 7–22 (John Wiley & Sons, Chichester, UK, 1995)

    Google Scholar 

  26. Sofer, Z. Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Anal. Chem. 52, 1389–1391 (1980)

    Article  CAS  Google Scholar 

  27. Stuiver, M. & Polach, H. A. Discussion: reporting of 14C data. Radiocarbon 19, 355–363 (1977)

    Article  Google Scholar 

  28. Vogel, J. S., Southon, J. R. & Nelson, D. E. 14C background levels in an AMS system. Nucl. Instrum. Methods Phys. Res. 29, 50–56 (1987)

    Article  ADS  Google Scholar 

  29. Masiello, C. A., Druffel, E. R. M. & Currie, L. A. Radiocarbon measurements of black carbon in aerosols and ocean sediments. Geochim. Cosmochim. Acta 66, 1025–1036 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Whelan, J. K. & Thompson-Rizer, C. L. in Organic Geochemistry: Principles and Applications (eds Engel, M. H. & Macko, S. A.) 289–353 (Plenum, New York, USA, 1993)

    Book  Google Scholar 

Download references

Acknowledgements

We thank E. Canuel, J. Hwang and S. Griffin for laboratory guidance during compound class extractions; M. Ederington-Hagy, E. Waterson and J. Southon for discussions on experiments; S. Griffin, R. Wilson, L. Delizo, C. Masiello, A. Grottoli and the captains and crews of RV Melville and RV Knorr for field assistance and logistical support; A. McNichol and colleagues at NOSAMS for Δ14C measurements; E. Franks for δ13C measurements; and R. Benner for comments that significantly improved this manuscript. This work was supported by the Chemical Oceanography Program of the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Ning Loh.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

This table shows the calculations for the weighted mean turnover times (TOT) for non-homogenously aged reservoirs of dissolved organic matter (DOM) based on the ages of the individual organic and size fractions measured in this study. (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, A., Bauer, J. & Druffel, E. Variable ageing and storage of dissolved organic components in the open ocean. Nature 430, 877–881 (2004). https://doi.org/10.1038/nature02780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02780

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing