Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of an antimalarial synthetic trioxolane drug development candidate

Abstract

The discovery of artemisinin more than 30 years ago provided a completely new antimalarial structural prototype; that is, a molecule with a pharmacophoric peroxide bond in a unique 1,2,4-trioxane heterocycle1. Available evidence2,3,4 suggests that artemisinin and related peroxidic antimalarial drugs exert their parasiticidal activity subsequent to reductive activation by haem, released as a result of haemoglobin digestion by the malaria-causing parasite. This irreversible redox reaction produces carbon-centred free radicals, leading to alkylation of haem5 and proteins (enzymes)6, one of which—the sarcoplasmic-endoplasmic reticulum ATPase PfATP6 (ref. 7)—may be critical to parasite survival. Notably, there is no evidence of drug resistance to any member of the artemisinin family of drugs8. The chemotherapy of malaria has benefited greatly from the semi-synthetic artemisinins artemether and artesunate as they rapidly reduce parasite burden, have good therapeutic indices and provide for successful treatment outcomes9. However, as a drug class, the artemisinins suffer from chemical10 (semi-synthetic availability, purity and cost), biopharmaceutical11 (poor bioavailability and limiting pharmacokinetics) and treatment8,11 (non-compliance with long treatment regimens and recrudescence) issues that limit their therapeutic potential. Here we describe how a synthetic peroxide antimalarial drug development candidate was identified in a collaborative drug discovery project.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Trioxolane chemistry.
Figure 2: Effective dose and onset and recrudescence data.
Figure 3: Tissue concentrations of trioxolanes 6 (open bars) and 7 (hatched bars) after oral administration of approximately 35 mg kg-1 to rats.

References

  1. Klayman, D. L. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228, 1049–1055 (1985)

    ADS  CAS  PubMed  Article  Google Scholar 

  2. Jefford, C. W. Why artemisinin and certain synthetic peroxides are potent antimalarials. Implications for the mode of action. Curr. Med. Chem. 8, 1803–1826 (2001)

    CAS  PubMed  Article  Google Scholar 

  3. Cumming, J. N., Polypradith, P. & Posner, G. H. Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: mechanism(s) of action. Adv. Pharmacol. 37, 254–297 (1997)

    Google Scholar 

  4. Wu, Y. How might qinghaosu (artemisinin) and related compounds kill the intraerythrocytic malaria parasite? A chemist's view. Acc. Chem. Res. 35, 255–259 (2002)

    CAS  PubMed  Article  Google Scholar 

  5. Robert, A., Coppel, Y. & Meunier, B. Alkylation of heme by the antimalarial drug artemisinin. Chem. Commun., 414–415 (2002)

  6. Meshnick, S. R. Artemisinin: mechanisms of action, resistance and toxicity. Int. J. Parasitol. 32, 1655–1660 (2002)

    CAS  PubMed  Article  Google Scholar 

  7. Eckstein-Ludwig, U. et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961 (2003)

    ADS  CAS  PubMed  Article  Google Scholar 

  8. White, N. J. Antimalarial drug resistance and combination chemotherapy. Phil. Trans. R. Soc. Lond. B 354, 739–749 (1999)

    CAS  Article  Google Scholar 

  9. White, N. J. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother. 41, 1413–1422 (1997)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Avery, M. A., Chong, W. K. M. & Jennings-White, C. Stereoselective total synthesis of (+ )-artemisinin, the antimalarial constituent of Artemisia annua L. J. Am. Chem. Soc. 114, 974–979 (1992)

    CAS  Article  Google Scholar 

  11. Ridley, R. G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686–693 (2002)

    CAS  Article  PubMed  Google Scholar 

  12. Nwaka, S. & Ridley, R. G. Virtual drug discovery and development of neglected diseases through public-private partnerships. Nature Rev. Drug Discov. 2, 919–928 (2003)

    CAS  Article  Google Scholar 

  13. Desjardins, R. E., Canfield, C. J., Haynes, J. D. & Chulay, J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 16, 710–718 (1979)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Ridley, R. G. et al. Antimalarial activity of the bisquinoline trans-N1, N2-bis-(7-chloroquinolin-4-yl)cyclohexane-1,2-diamine: Comparison of two stereoisomers and detailed evaluation of the S,S enantiomer, Ro 47–7737. Antimicrob. Agents Chemother. 41, 677–686 (1997)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Abe, M., Inakazu, T., Munakata, J. & Nojima, M. 18O-Tracer studies of Fe(ii)-induced decomposition of 1,2,4-trioxolanes (ozonides) derived from cyclopentenes and indenes. Inner-sphere electron transfer reduction of the peroxide linkage. J. Am. Chem. Soc. 121, 6556–6562 (1999)

    CAS  Article  Google Scholar 

  16. van de Waterbeemd, H., Smith, D. A., Beaumont, K. & Walker, D. K. Property-based design: Optimisation of drug absorption and pharmacokinetics. J. Med. Chem. 44, 1313–1333 (2001)

    CAS  PubMed  Article  Google Scholar 

  17. Smith, D., Jones, B. C. & Walker, D. K. Design of drugs involving concepts and theories of drug metabolism and pharmacokinetics. Med. Res. Rev. 16, 243–266 (1996)

    CAS  PubMed  Article  Google Scholar 

  18. Palm, K., Stenberg, P., Luthman, K. & Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. 14, 568–571 (1997)

    CAS  PubMed  Article  Google Scholar 

  19. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–26 (1997)

    CAS  Article  Google Scholar 

  20. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002)

    CAS  PubMed  Article  Google Scholar 

  21. Griesbaum, K., Liu, X., Kassiaris, A. & Scherer, M. Ozonolyses of O-alkylated ketoximes in the presence of carbonyl groups: a facile access to ozonides. Liebigs Ann./Recueil., 1381–1390 (1997)

  22. Tang, Y., Dong, Y. & Vennerstrom, J. L. Synthetic peroxides as antimalarials. Med. Res. Rev. 24, 425–448 (2004)

    CAS  PubMed  Article  Google Scholar 

  23. Vennerstrom, J.L., Dong, Y., Chollet, J. & Matile, H. Spiro and dispiro 1,2,4–trioxolane antimalarials. US patent 6, 486,199 (2002).

  24. Vennerstrom, J.L. et al. Spiro and dispiro 1,2,4-trioxolane antimalarials. US continuation-in-part based on PCT/US02/19767 (filed 21 June 2002).

  25. Chawira, A. N. & Warhurst, D. C. The effect of artemisinin combined with standard antimalarials against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum in vitro. J. Trop. Med. Hyg. 90, 1–8 (1987)

    CAS  PubMed  Google Scholar 

  26. Li, A.-G. et al. The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J. Pharm. Pharmacol. 50, 173–182 (1998)

    CAS  PubMed  Article  Google Scholar 

  27. Vyas, N., Avery, B. A., Avery, M. A. & Wyandt, C. M. Carrier-mediated partitioning of artemisinin into Plasmodium falciparum-infected erythrocytes. Antimicrob. Agents Chemother. 46, 105–109 (2002)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Gordi, T. & Lepist, E.-I. Artemisinin derivatives: Toxic for laboratory animals, safe for humans? Toxicol. Lett. 147, 99–107 (2004)

    CAS  PubMed  Article  Google Scholar 

  29. Keul, H. Über konstitution und entstehung der ozonide von bis-adamantyliden und von bis-bicyclo[3.3.1]non-9-yliden. Chem. Ber. 108, 1207–1217 (1975)

    CAS  Article  Google Scholar 

  30. Crespi, C. L., Miller, V. P. & Penman, B. W. Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188–190 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. G. Ridley and M. Tanner for inspiration; K. Griesbaum and A. Hudson for advice; C. Craft, S. Nwaka, S. Campbell, P. Hadvary and R. Imhof for their support; and J. M. Karle for performing X-ray crystallographic experiments. This work was supported by the World Health Organization and Medicines for Malaria Venture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan L. Vennerstrom.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

This file contains a detailed Methods section with a complete description of the reaction of trioxolane 4 with ferrous acetate/TEMPO; Supplementary Table 1 (in vivo activity in P. berghei infected mice following a, single oral doses or b, three consecutive daily oral doses of trioxolanes 5–7 and the four comparator drugs), Table 2 (prophylactic activity following single 100 mg/kg oral doses of trioxolane 6 and 7 and the four comparator drugs) and Table 3 (in vitro cross-resistance (IC50, IC90) for trioxolanes 6 and 7, AS, and CQ with various strains of P. falciparum); and the legend to Supplementary Figure 1. (DOC 72 kb)

Supplementary Figure 1

This figure shows plasma concentration versus time profiles following oral administration of trioxolanes 6 and 7, AM, and AS to rats. (PDF 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vennerstrom, J., Arbe-Barnes, S., Brun, R. et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430, 900–904 (2004). https://doi.org/10.1038/nature02779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02779

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing