Abstract
At central excitatory synapses, N-methyl-d-aspartate (NMDA) receptors, which have a high affinity for glutamate1, produce a slowly rising synaptic current in response to a single transmitter pulse and an additional current after a second, closely timed stimulus2. Here we show, by examining the kinetics of transmitter binding and channel gating in single-channel currents from recombinant NR1/NR2A receptors, that the synaptic response to trains of impulses is determined by the molecular reaction mechanism of the receptor. The rate constants estimated for the activation reaction predict that, after binding neurotransmitter, receptors hesitate for ∼4 ms in a closed high-affinity conformation before they either proceed towards opening or release neurotransmitter, with about equal probabilities. Because only about half of the initially fully occupied receptors become active, repetitive stimulation elicits currents with distinct waveforms depending on pulse frequency. This high-affinity/low-efficiency activation mechanism might serve as a link between stimulation frequency and the directionality of the ensuing synaptic plasticity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Conformational motions and ligand-binding underlying gating and regulation in IP3R channel
Nature Communications Open Access 14 November 2022
-
Shifts in the selectivity filter dynamics cause modal gating in K+ channels
Nature Communications Open Access 10 January 2019
-
A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors
Scientific Reports Open Access 31 July 2017
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Patneau, D. K. & Mayer, M. L. Structure–activity relationships for amino acid transmitter candidates acting at N-methyl-d-aspartate and quisqualate receptors. J. Neurosci. 10, 2385–2399 (1990)
Mainen, Z. F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999)
Anson, L. C., Chen, P. E., Wyllie, D. J., Colquhoun, D. & Schoepfer, R. Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J. Neurosci. 18, 581–589 (1998)
Clements, J. D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163–171 (1996)
Diamond, J. S. & Jahr, C. E. Transporters buffer synaptically released glutamate on a submillisecond time scale. J. Neurosci. 17, 4672–4687 (1997)
Frerking, M. & Wilson, M. Saturation of postsynaptic receptors at central synapses? Curr. Opin. Neurobiol. 6, 395–403 (1996)
Franks, K. M., Bartol, T. M. Jr & Sejnowski, T. J. A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J. 83, 2333–2348 (2002)
Min, M. Y., Rusakov, D. A. & Kullmann, D. M. Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Neuron 21, 561–570 (1998)
McAllister, A. K. & Stevens, C. F. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc. Natl Acad. Sci. USA 97, 6173–6178 (2000)
Ishikawa, T., Sahara, Y. & Takahashi, T. A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron 34, 613–621 (2002)
Oertner, T. G., Sabatini, B. L., Nimchinsky, E. A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nature Neurosci. 5, 657–664 (2002)
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984)
Traynelis, S. F. & Cull-Candy, S. G. Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 345, 347–350 (1990)
Westbrook, G. L. & Mayer, M. L. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640–643 (1987)
Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the shape of their synaptic response. Nature Neurosci. 6, 476–483 (2003)
Magleby, K. L. Modal gating of NMDA receptors. Trends Neurosci. 27, 231–233 (2004)
Popescu, G. & Auerbach, A. The NMDA receptor gating machine: lessons from single channels. Neuroscientist 10, 192–198 (2004)
Anson, L. C., Schoepfer, R., Colquhoun, D. & Wyllie, D. J. Single-channel analysis of an NMDA receptor possessing a mutation in the region of the glutamate binding site. J. Physiol. (Lond.) 527, 225–237 (2000)
Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998)
Chen, N., Ren, J., Raymond, L. A. & Murphy, T. H. Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-d-aspartate receptor nonsaturation during synaptic stimulation. Mol. Pharmacol. 59, 212–219 (2001)
Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011 (1992)
Vicini, S. et al. Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J. Neurophysiol. 79, 555–566 (1998)
Cull-Candy, S., Brickley, S. & Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335 (2001)
Yang, S. N., Tang, Y. G. & Zucker, R. S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol. 81, 781–787 (1999)
Robert, A., Irizarry, S. N., Hughes, T. E. & Howe, J. R. Subunit interactions and AMPA receptor desensitization. J. Neurosci. 21, 5574–5586 (2001)
Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004)
Qin, F., Auerbach, A. & Sachs, F. Maximum likelihood estimation of aggregated Markov processes. Proc. R. Soc. Lond. B 264, 375–383 (1997)
Magleby, K. L. & Pallotta, B. S. Burst kinetics of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (Lond.) 344, 605–623 (1983)
Qin, F., Auerbach, A. & Sachs, F. A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys. J. 79, 1915–1927 (2000)
Acknowledgements
We thank T. Bailey, M. Teeling and C. Nicolai for technical assistance. This work was supported by NIH grants to G.P. and A.A.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Supplementary Figure S1
This figure illustrates the kinetic schemes used to fit single channel data obtained from NR1/2A receptors. (PPT 42 kb)
Supplementary Table S1
This document contains a table summarizing time constants for closed and open components in single channel currents NR1/2A receptors. (DOC 32 kb)
Supplementary Table S2
This file contains a table summarizing rate constants for L-mode gating NR1/2A receptors optimized with each of the kinetic schemes illustrated in Supplementary Figure S1. (DOC 44 kb)
Rights and permissions
About this article
Cite this article
Popescu, G., Robert, A., Howe, J. et al. Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430, 790–793 (2004). https://doi.org/10.1038/nature02775
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature02775
This article is cited by
-
Conformational motions and ligand-binding underlying gating and regulation in IP3R channel
Nature Communications (2022)
-
Shifts in the selectivity filter dynamics cause modal gating in K+ channels
Nature Communications (2019)
-
A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors
Scientific Reports (2017)
-
NMDA receptors: linking physiological output to biophysical operation
Nature Reviews Neuroscience (2017)
-
The structure–energy landscape of NMDA receptor gating
Nature Chemical Biology (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.