Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x

Abstract

The fundamental building block of the copper oxide superconductors is a Cu4O4 square plaquette. The plaquettes in most of these materials are slightly distorted to form a rectangular lattice, for which an influential theory predicts that high-transition-temperature (high-Tc) superconductivity is nucleated in ‘stripes’ aligned along one of the axes1,2,3. This theory received strong support from experiments that indicated a one-dimensional character for the magnetic excitations in the high-Tc material YBa2Cu3O6.6 (ref. 4). Here we report neutron scattering data on ‘untwinned’ YBa2Cu3O6+x crystals, in which the orientation of the rectangular lattice is maintained throughout the entire volume. Contrary to the earlier claim4, we demonstrate that the geometry of the magnetic fluctuations is two-dimensional. Rigid stripe arrays therefore appear to be ruled out over a wide range of doping levels in YBa2Cu3O6+x, but the data may be consistent with liquid-crystalline stripe order5. The debate about stripes has therefore been reopened.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Layout of the reciprocal lattice and magnetic spectral weight of YBa2Cu3O6.85.
Figure 2: Constant-energy scans along the trajectories indicated in Fig. 1a.
Figure 3: Constant-Q scans demonstrating the dispersion of the magnetic mode along a* (a, c, e) and b* (b, d, f).
Figure 4: Constant-energy scans for YBa2Cu3O6.6.

References

  1. 1

    Zaanen, J & Gunnarson, O. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40, 7391–7394 (1989)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Emery, V. J. & Kivelson, S. A. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)

    ADS  Article  Google Scholar 

  4. 4

    Mook, H. A., Dai, P., Dogan, F. & Hunt, R. D. One-dimensional nature of the magnetic fluctuations in YBa2Cu3O6.6 . Nature 404, 729–731 (2000)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Mook, H. A. et al. Spin fluctuations in YBa2Cu3O6.6 . Nature 395, 580–582 (1998)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Yamada, K. et al. Doping dependence of the spatially modulated dynamical spin correlations and the superconducting transition temperature in La2-xSrxCuO4 . Phys. Rev. B 57, 6165–6172 (1998)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Arai, M. et al. Incommensurate spin dynamics of underdoped superconductor YBa2Cu3O6.7 . Phys. Rev. Lett. 83, 608–611 (1999)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3O6.85 . Science 288, 1234–1237 (2000)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Reznik, D. et al. Dispersion of magnetic excitations in superconducting optimally doped YBa2Cu3O6.95. Preprint at 〈http://xxx.arxiv.org/pdf/cond-mat/0307591〉 (2003).

  12. 12

    Stock, C. et al. Dynamic stripes and resonance in the superconducting and normal phases of YBa2Cu3O6.5 ortho-II superconductor. Phys. Rev. B 69, 014502 (2004)

    ADS  Article  Google Scholar 

  13. 13

    Batista, C. D., Ortiz, G. & Balatsky, A. V. Unified description of the resonance peak and incommensuration in high-Tc superconductors. Phys. Rev. B 64, 172508 (2001)

    ADS  Article  Google Scholar 

  14. 14

    Krüger, F. & Scheidl, S. Spin dynamics of stripes. Phys. Rev. B 67, 134512 (2003)

    ADS  Article  Google Scholar 

  15. 15

    Fine, B. V. Hypothesis of two-dimensional stripe arrangement and its implications for the superconductivity in high-Tc cuprates. Preprint at 〈http://xxx.arxiv.org/pdf/cond-mat/0308428〉 (2003)

  16. 16

    Brinckmann, J. & Lee, P. A. Renormalized mean-field theory of neutron scattering in cuprate superconductors. Phys. Rev. B 65, 014502 (2001)

    ADS  Article  Google Scholar 

  17. 17

    Onufrieva, F. & Pfeuty, P. Spin dynamics of a two-dimensional metal in a superconducting state: Application to the high-Tc cuprates. Phys. Rev. B 65, 054515 (2002)

    ADS  Article  Google Scholar 

  18. 18

    Andersen, O. K., Liechtenstein, A. I., Jepsen, O. & Paulsen, F. LDA energy bands, low-energy Hamiltonians, t′, t″, tperp(k) and J perp(k). J. Phys. Chem. Solids 56, 1573–1591 (1995)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Grévin, B., Berthier, Y. & Collon, G. In-plane charge modulation below Tc and charge density-wave correlations in the chain layer in YBa2Cu3O7 . Phys. Rev. Lett. 85, 1310–1313 (2000)

    ADS  Article  Google Scholar 

  20. 20

    Feng, D. L. et al. Zooming-in on the charge ordering in YBa2Cu3O6.5. Preprint at 〈http://xxx.arxiv.org/pdf/cond-mat/0402488〉 (2004)

  21. 21

    Yamase, H. & Kohno, H. Possible quasi-one-dimensional Fermi surface in La2-xSrxCuO4 . J. Phys. Soc. Jpn 69, 332–335 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Halboth, C. J. & Metzner, W. D-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model. Phys. Rev. Lett. 85, 5162–5165 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Oganesyan, V., Kivelson, S. A. & Fradkin, E. Quantum theory of a nematic Fermi liquid. Phys. Rev. B 64, 195109 (2001)

    ADS  Article  Google Scholar 

  24. 24

    Limonov, M. F., Rykov, A. I., Tajima, S. & Yamanaka, A. Superconductivity-induced effects on phononic and electronic Raman scattering in twin-free YBa2Cu3O7-x single crystals. Phys. Rev. B 61, 12412–12419 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Lu, D. H. et al. Superconducting gap and strong in-plane anisotropy in untwinned YBa2Cu3O7-δ . Phys. Rev. Lett. 86, 4370–4373 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Lin, C. T., Zhou, W. & Liang, W. Y. Growth of large and untwinned single crystals of YBCO. Physica C 195, 291–300 (1992)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Voronkova, V. I. & Wolf, T. Thermomechanical detwinning of YBa2Cu3O7-x single crystals under reduced oxygen partial pressure. Physica C 218, 175–180 (1993)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Popovici, M. On the resolution of slow-neutron spectrometers. IV. The triple-axis spectrometer resolution function, spatial effects included. Acta Crystallogr. A 31, 507–513 (1975)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Hennion, S. Kivelson, D. Manske, W. Metzner and H. Yamase for discussions, S. Lacher, H. Wendel, B. Baum and M. Bakr for crystal preparation, M. Ohl and W. Plenert for the design and manufacturing of the sample holder, H. Bender, C. Busch and H. Klann for technical support, and P. Baroni for technical support at the 2T spectrometer. We acknowledge support from the German Federal Ministry of Culture and Research (BMBF) and from the Deutsche Forschungsgemeinschaft.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Keimer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Discussion

We use an anisotropic, damped harmonic oscillator model to describe the data collected on detwinned YBa2Cu3O6.85. This model and its parameters are discussed here and a figure is provided showing the energy dependence of the damping parameter γ along both perpendicular directions a* and b*. (DOC 252 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hinkov, V., Pailhès, S., Bourges, P. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x. Nature 430, 650–654 (2004). https://doi.org/10.1038/nature02774

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing