Cell cycle regulation of central spindle assembly


The bipolar mitotic spindle is responsible for segregating sister chromatids at anaphase. Microtubule motor proteins generate spindle bipolarity and enable the spindle to perform mechanical work1. A major change in spindle architecture occurs at anaphase onset when central spindle assembly begins. This structure regulates the initiation of cytokinesis and is essential for its completion2. Central spindle assembly requires the centralspindlin complex composed of the Caenorhabditis elegans ZEN-4 (mammalian orthologue MKLP1) kinesin-like protein and the Rho family GAP CYK-4 (MgcRacGAP). Here we describe a regulatory mechanism that controls the timing of central spindle assembly. The mitotic kinase Cdk1/cyclin B phosphorylates the motor domain of ZEN-4 on a conserved site within a basic amino-terminal extension characteristic of the MKLP1 subfamily. Phosphorylation by Cdk1 diminishes the motor activity of ZEN-4 by reducing its affinity for microtubules. Preventing Cdk1 phosphorylation of ZEN-4/MKLP1 causes enhanced metaphase spindle localization and defects in chromosome segregation. Thus, phosphoregulation of the motor domain of MKLP1 kinesin ensures that central spindle assembly occurs at the appropriate time in the cell cycle and maintains genomic stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: ZEN-4/MKLP1 localizes upon anaphase onset and is a Cdk1 substrate in vitro.
Figure 2: Microtubule (MT) binding by ZEN-4 is inhibited by Cdk1/cyclin B phosphorylation.
Figure 3: MKLP1 is phosphorylated on Cdk1/cyclin B sites in metaphase and dephosphorylated during anaphase.
Figure 4: Non-phosphorylatable MKLP1 induces lagging chromosomes, and non-phosphorylatable ZEN-4 localizes in embryos depleted of CDC-14.


  1. 1

    Scholey, J. M., Brust-Mascher, I. & Mogilner, A. Cell division. Nature 422, 746–752 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Glotzer, M. Animal cell cytokinesis. Annu. Rev. Cell Dev. Biol. 17, 351–386 (2001)

    CAS  Article  Google Scholar 

  3. 3

    Mishima, M., Kaitna, S. & Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell 2, 41–54 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Adams, R. R., Carmena, M. & Earnshaw, W. C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54 (2001)

    CAS  Article  Google Scholar 

  5. 5

    Pereira, G. & Schiebel, E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Romano, A. et al. CSC-1: A subunit of the Aurora B kinase complex that binds to the Survivin-like protein BIR-1 and the Incenp-like protein ICP-1. J. Cell Biol. 161, 229–236 (2003)

    CAS  Article  Google Scholar 

  7. 7

    Sellitto, C. & Kuriyama, R. Distribution of a matrix component of the midbody during the cell cycle in Chinese hamster ovary cells. J. Cell Biol. 106, 431–439 (1988)

    CAS  Article  Google Scholar 

  8. 8

    Jantsch-Plunger, V. et al. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000)

    CAS  Article  Google Scholar 

  9. 9

    Powers, J., Bossinger, O., Rose, D., Strome, S. & Saxton, W. A nematode kinesin required for cleavage furrow advancement. Curr. Biol. 8, 1133–1136 (1998)

    CAS  Article  Google Scholar 

  10. 10

    Raich, W. B., Moran, A. N., Rothman, J. H. & Hardin, J. Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol. Biol. Cell 9, 2037–2049 (1998)

    CAS  Article  Google Scholar 

  11. 11

    Gray, C. H., Good, V. M., Tonks, N. K. & Barford, D. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. EMBO J. 22, 3524–3535 (2003)

    CAS  Article  Google Scholar 

  12. 12

    Gruneberg, U., Glotzer, M., Gartner, A. & Nigg, E. A. The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. J. Cell Biol. 158, 901–914 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Parry, D. H. & O'Farrell, P. H. The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr. Biol. 11, 671–683 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Wheatley, S. P. et al. CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J. Cell Biol. 138, 385–393 (1997)

    CAS  Article  Google Scholar 

  15. 15

    Nislow, C., Lombillo, V. A., Kuriyama, R. & McIntosh, J. R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359, 543–547 (1992)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Berliner, E. et al. Microtubule movement by a biotinated kinesin bound to streptavidin-coated surface. J. Biol. Chem. 269, 8610–8615 (1994)

    CAS  PubMed  Google Scholar 

  17. 17

    Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA 97, 640–645 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997)

    CAS  Article  Google Scholar 

  19. 19

    Matuliene, J. & Kuriyama, R. Kinesin-like protein CHO1 is required for the formation of midbody matrix and the completion of cytokinesis in mammalian cells. Mol. Biol. Cell 13, 1832–1845 (2002)

    CAS  Article  Google Scholar 

  20. 20

    Minestrini, G., Harley, A. S. & Glover, D. M. Localization of Pavarotti-KLP in living Drosophila embryos suggests roles in reorganizing the cortical cytoskeleton during the mitotic cycle. Mol. Biol. Cell 14, 4028–4038 (2003)

    CAS  Article  Google Scholar 

  21. 21

    Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004)

    CAS  Article  Google Scholar 

  23. 23

    Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004)

    CAS  Article  Google Scholar 

  24. 24

    Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895–2906 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Mollinari, C. et al. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 157, 1175–1186 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995)

    CAS  Article  Google Scholar 

  27. 27

    Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol. 10, 1172–1181 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Beckett, D., Kovaleva, E. & Schatz, P. J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999)

    CAS  Article  Google Scholar 

  29. 29

    Patra, D. & Dunphy, W. G. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase-promoting complex at mitosis. Genes Dev. 12, 2549–2559 (1998)

    CAS  Article  Google Scholar 

  30. 30

    Boyle, W. J., van der Geer, P. & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201, 110–149 (1991)

    CAS  Article  Google Scholar 

Download references


This work was supported by a grant from the Austrian Science Foundation and with the support of Boehringer Ingelheim. M.M., V.P. and M.G. would like to thank K. Bartalska for technical assistance, and S. Kaitna and K. Mechtler for help in the initial stages of this project.

Author information



Corresponding author

Correspondence to Michael Glotzer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Time lapse fluorescence microscopy of rhodamine-labeled, taxol-stabilized microtubules gliding on a surface of ZEN-4MOT (1-434). Elapsed time is shown in min:sec. (MOV 1500 kb)

Supplementary Figure 2

Structural model of human kinesin (based on coordinates 1BG2, Kull et. al.) reveals that the N terminus of conventional kinesin is in the immediate vicinity of loop 12. The highly basic K-loop in KIF1A that interacts with the C-terminal tail of tubulin is located in a loop that corresponds to loop 12 of conventional kinesin. Since the basic N terminus of ZEN-4 extends further that the N- terminus shown in this model, it too could likely interact with the C-terminal tail of tubulin. (MOV 838 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mishima, M., Pavicic, V., Grüneberg, U. et al. Cell cycle regulation of central spindle assembly. Nature 430, 908–913 (2004). https://doi.org/10.1038/nature02767

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing