Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The nonlinear nature of friction

Abstract

Tribology is the study of adhesion, friction, lubrication and wear of surfaces in relative motion. It remains as important today as it was in ancient times, arising in the fields of physics, chemistry, geology, biology and engineering. The more we learn about tribology the more complex it appears. Nevertheless, recent experiments coupled to theoretical modelling have made great advances in unifying apparently diverse phenomena and revealed many subtle and often non-intuitive aspects of matter in motion, which stem from the nonlinear nature of the problem.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Three theoretical approaches to model friction.
Figure 2: Examples of complex tribological effects of friction forces.
Figure 3: Reduction of friction and stick–slip by mechanical excitations.
Figure 4: Two examples of friction and lubrication forces in living systems.

References

  1. 1

    Binnig, G., Quate, C. F. & Gerber, Ch. The atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1996)

    ADS  Article  Google Scholar 

  2. 2

    Israelachvili, J. N. & Adams, G. E. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Faraday Trans. I 74, 975–1001 (1978)

    CAS  Article  Google Scholar 

  3. 3

    Landman, U., Luedtke, W. D. & Ringer, E. M. in Fundamentals of Friction: Macroscopic and Microscopic Processes (eds Singer, I. L. & Pollock, H. M.) 463–510 (Kluwer, Dordrecht, 1992)

    Book  Google Scholar 

  4. 4

    Thompson, P. A. & Robbins, M. O. Origin of stick-slip motion in boundary lubrication. Science 250, 792–794 (1990)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Muser, M. H., Urbakh, M. & Robbins, M. O. Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Google Scholar 

  6. 6

    He, G., Muser, M. H. & Robbins, M. O. Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Robbins, M. O. & Muser, M. H. in Modern Tribology Handbook (ed. Bhushan, B.) 717–757 (CRC Press, Boca Raton, Florida, 2001)

    Google Scholar 

  8. 8

    Gao, J. P., Luedtke, W. D. & Landman, U. Friction control in thin film lubrication. J. Phys. Chem. B 102, 5033–5037 (1998)

    CAS  Article  Google Scholar 

  9. 9

    Gao, J. P. et al. Frictional forces and Amontons' Law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410–3425 (2004)

    CAS  Article  Google Scholar 

  10. 10

    Persson, B. N. J. Sliding Friction, Physical Properties and Applications (Springer, Berlin, 2000)

    Book  Google Scholar 

  11. 11

    Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)

    ADS  Article  Google Scholar 

  12. 12

    Carlson, J. M. & Batista, A. A. Constitutive relation for the friction between lubricated surfaces. Phys. Rev. E 53, 4153–4165 (1996)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Urbakh, M., Daikhin, L. & Klafter, J. Dynamics of confined liquids under shear. Phys. Rev. E 51, 2137–2141 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Aranson, I. S., Tsimring, L. S. & Vinokur, V. M. Stick-slip friction and nucleation dynamics of ultrathin liquid films. Phys. Rev. B 65, 125402 (2002)

    ADS  Article  Google Scholar 

  15. 15

    Lemaître, A. Rearrangements and dilatancy for sheared dense materials. Phys. Rev. Lett. 89, 195503 (2002)

    ADS  Article  Google Scholar 

  16. 16

    Rozman, M. G., Urbakh, M. & Klafter, J. Stick-slip motion and force fluctuations in a driven two-wave potential. Phys. Rev. Lett. 77, 683–686 (1996)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Rozman, M. G., Urbakh, M. & Klafter, J. Origin of stick-slip motion in a driven two-wave potential. Phys. Rev. E 54, 6485–6494 (1996)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Muser, M. H., Wenning, L. & Robbins, M. O. Simple microscopic theory of Amontons's laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Drummond, C., Alcantar, N. A. & Israelachvili, J. N. Shear alignment of confined hydrocarbon liquid films. Phys. Rev. E 66, 011705 (2002)

    ADS  Article  Google Scholar 

  20. 20

    Klein, J. & Kumacheva, E. Confinement-induced phase-transitions in simple liquids. Science 269, 816–819 (1995)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Demirel, A. L. & Granick, S. Friction fluctuations and friction memory in stick-slip motion. Phys. Rev. Lett. 77, 4330–4333 (1996)

    ADS  Article  Google Scholar 

  22. 22

    Drummond, C. & Israelachvili, J. N. Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33, 4910–4920 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Drummond, C. & Israelachvili, J. Dynamic phase transitions in confined lubricant fluids under shear. Phys. Rev. E 63, 041506 (2001)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Gourdon, D. & Israelachvili, J. Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 68, 021602 (2003)

    ADS  Article  Google Scholar 

  25. 25

    Drummond, C., Israelachvili, J. & Richetti, P. Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E 67, 066110 (2003)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hu, H. W., Carson, G. A. & Granick, S. Relaxation-time of confined liquids under shear. Phys. Rev. Lett. 66, 2758–2761 (1991)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Yoshisawa, H., Chen, Y.-L. & Israelachvili, J. Fundamental mechanisms of interfacial friction I: Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  Google Scholar 

  28. 28

    Gao, J. P., Luedtke, W. D. & Landman, U. Layering transitions and dynamics of confined liquid films. Phys. Rev. Lett. 79, 705–708 (1997)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Thompson, P. A., Robbins, M. O. & Grest, G. S. Structure and shear response in nanometer-thick films. Isr. J. Chem. 35, 93–106 (1995)

    CAS  Article  Google Scholar 

  30. 30

    Barrat, J.-L. & Boquet, L. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss. 112, 1–9 (1999)

    Article  Google Scholar 

  31. 31

    Lemaître, A. & Carlson, J. Boundary lubrication with a glassy interface. Phys. Rev. E (in the press)

  32. 32

    Filippov, A. E., Klafter, J. & Urbakh, M. Inverted stick-slip friction: what is the mechanism? J. Chem. Phys. 116, 6871–6874 (2002)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Rozman, M. G., Urbakh, M., Klafter, J. & Elmer, F.-J. Atomic scale friction and different phases of motion of embedded molecular systems. J. Phys. Chem. B 102, 7924–7930 (1998)

    CAS  Article  Google Scholar 

  34. 34

    Filippov, A. E., Klafter, J. & Urbakh, M. Confined molecules under shear: from a microscopic description to phenomenology. Phys. Rev. Lett. 87, 275506 (2001)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Bhushan, B. (ed.) Micro/Nanotribology and Its Applications Series E Applied Sciences Vol. 330, 1–668 (NATO Advanced Sciences Institutes, Kluwer Academic, Dordrecht/Boston/London, 1997)

  36. 36

    Cochard, A., Bureau, L. & Baumberger, T. Stabilization of frictional sliding by normal load modulation. Trans. ASME 70, 220–226 (2003)

    Article  Google Scholar 

  37. 37

    Heuberger, M., Drummond, C. & Israelachvili, J. N. Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038–5041 (1998)

    CAS  Article  Google Scholar 

  38. 38

    Rozman, M. G., Urbakh, M. & Klafter, J. Controlling chaotic friction. Phys. Rev. E 57, 7340–7343 (1998)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Zaloj, V., Urbakh, M. & Klafter, J. Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82, 4823–4826 (1999)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Braiman, Y., Barhen, J. & Protopopescu, V. Control of friction at the nanoscale. Phys. Rev. Lett. 90, 094301 (2003)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Israelachvili, J. N. Measurement of the viscosity of liquids in very thin films. J. Colloid Interf. Sci. 110, 263–271 (1986)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Raviv, U. et al. Lubrication by charged polymers. Nature 425, 163–165 (2003)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Chang, K.-C. & Hammer, D. A. Adhesive dynamics simulations of Sialylx-Lewis/E-selectin-mediated rolling in a cell-free system. Biophys. J. 79, 1891–1902 (2000)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Goetz, D. J., El-Sabban, M. E., Pauli, B. U. & Hammer, D. A. Dynamics of neutrophil rolling over stimulated endothelium in vitro. Biophys. J. 66, 2202–2209 (1994)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Evans, E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001)

    CAS  Article  Google Scholar 

  46. 46

    Sang, Y., Dube, M. & Grant, M. Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Dudko, O., Filippov, A. E., Klafter, J. & Urbakh, M. Dynamical force spectroscopy: a Fokker-Planck approach. Chem. Phys. Lett. 352, 499–504 (2002)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Dudko, O., Filippov, A. E., Klafter, J. & Urbakh, M. Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc. Natl Acad. Sci. USA 100, 11378–11381 (2003)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E. & Brune, H. Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Stills, S. & Overney, R. Creeping friction dynamics and molecular dissipation mechanisms in glassy polymers. Phys. Rev. Lett. 91, 095501 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The experimental work was done under a DOE grant; M.U. and J.K acknowledge discussions and collaboration with A. E. Filippov.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Urbakh.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Urbakh, M., Klafter, J., Gourdon, D. et al. The nonlinear nature of friction. Nature 430, 525–528 (2004). https://doi.org/10.1038/nature02750

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing