Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solar chromospheric spicules from the leakage of photospheric oscillations and flows

Abstract

Spicules are dynamic jets propelled upwards (at speeds of 20 km s-1) from the solar ‘surface’ (photosphere) into the magnetized low atmosphere of the Sun1,2,3. They carry a mass flux of 100 times that of the solar wind into the low solar corona4. With diameters close to observational limits (< 500 km), spicules have been largely unexplained3 since their discovery in 18775: none of the existing models3 can account simultaneously for their ubiquity, evolution, energetics and recently discovered periodicity6. Here we report a synthesis of modelling and high-spatial-resolution observations in which numerical simulations driven by observed photospheric velocities directly reproduce the observed occurrence and properties of individual spicules. Photospheric velocities are dominated by convective granulation (which has been considered before for spicule formation7,8,9,10,11) and by p-modes (which are solar global resonant acoustic oscillations visible in the photosphere as quasi-sinusoidal velocity and intensity pulsations). We show that the previously ignored p-modes are crucial: on inclined magnetic flux tubes, the p-modes leak sufficient energy from the global resonant cavity into the chromosphere to power shocks that drive upward flows and form spicules.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: High-resolution image showing the ubiquity and periodicity of spicules.
Figure 2: Comparison between spicule occurrence observed on the Sun and spicule height obtained from numerical simulations that are driven by observed velocities in the photosphere.
Figure 3: Leakage of ‘evanescent’ p-mode power from photosphere into chromosphere.
Figure 4: Mass-weighted vertical velocity along the flux tube as a function of height and time.

References

  1. Beckers, J. M. Solar spicules. Sol. Phys. 3, 367–433 (1968)

    ADS  Google Scholar 

  2. Beckers, J. M. Solar spicules. Annu. Rev. Astron. Astrophys. 10, 73–100 (1972)

    ADS  CAS  Article  Google Scholar 

  3. Sterling, A. C. Solar spicules: a review of recent models and targets for future observations. Sol. Phys. 196, 79–111 (2000)

    ADS  Article  Google Scholar 

  4. Withbroe, G. L. The role of spicules in heating the solar atmosphere: implications of EUV observations. Astrophys. J. 267, 825–836 (1983)

    ADS  CAS  Article  Google Scholar 

  5. Foukal, P. Solar Astrophysics 10–11 (John Wiley & Sons, New York, 1990)

    Google Scholar 

  6. De Pontieu, B., Erdélyi, R. & de Wijn, A. G. Intensity oscillations in the upper transition region above active region plage. Astrophys. J. 595, L63–L66 (2003)

    ADS  Article  Google Scholar 

  7. Roberts, B. The resonant response to granular buffeting. Sol. Phys. 61, 23–34 (1979)

    ADS  Article  Google Scholar 

  8. Hollweg, J. V. On the origin of solar spicules. Astrophys. J. 257, 345–353 (1982)

    ADS  Article  Google Scholar 

  9. Sterling, A. C. & Hollweg, J. V. The rebound shock model for solar spicules—Dynamics at long times. Astrophys. J. 327, 950–963 (1988)

    ADS  Article  Google Scholar 

  10. Sterling, A. C. & Hollweg, J. V. A rebound shock model for solar fibrils. Astrophys. J. 343, 985–993 (1989)

    ADS  Article  Google Scholar 

  11. Sterling, A. C. & Mariska, J. T. Numerical simulations of the rebound shock model for solar spicules. Astrophys. J. 349, 647–655 (1990)

    ADS  Article  Google Scholar 

  12. Suematsu, Y., Wang, H. & Zirin, H. High-resolution observation of disk spicules: I. Evolution and kinematics of spicules in the enhanced network. Astrophys. J. 450, 411–421 (1995)

    ADS  CAS  Article  Google Scholar 

  13. Spruit, H. C. & Roberts, B. Magnetic flux tubes on the sun. Nature 304, 401–406 (1983)

    ADS  Article  Google Scholar 

  14. Scharmer, G. B., Bjelksjö, K., Korhonen, T. K., Lindberg, B. & Pettersson, B. in Innovative Telescopes and Instrumentation for Solar Astrophysics (eds Keil, S. & Avakyan, S.) 341–350 (Proc. SPIE, Vol. 4853, SPIE—The International Society for Optical Engineering, Hawaii, 2003)

    Book  Google Scholar 

  15. James, S. P., Erdélyi, R. & De Pontieu, B. Can ion-neutral damping help to form spicules? Astron. Astrophys. 406, 715–724 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Vernazza, J. E., Avrett, E. H. & Loeser, R. Structure of the solar chromosphere. III—Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635–725 (1981)

    ADS  CAS  Article  Google Scholar 

  17. Schrijver, C. J. & Harvey, K. L. The photospheric magnetic flux budget. Sol. Phys. 150, 1–18 (1994)

    ADS  Article  Google Scholar 

  18. Scherrer, P. H. et al. The Solar Oscillations Investigation—Michelson Doppler Imager. Sol. Phys. 162, 129–188 (1995)

    ADS  Article  Google Scholar 

  19. Christensen-Dalsgaard, J., Gough, D. & Toomre, J. Seismology of the Sun. Science 229, 923–931 (1985)

    ADS  CAS  Article  Google Scholar 

  20. Cheng, Q.-Q. & Yi, Z. Oscillations in the solar atmosphere: a result of hydrodynamical simulations. Astron. Astrophys. 313, 971–978 (1996)

    ADS  Google Scholar 

  21. Sutmann, G. & Ulmschneider, P. Acoustic wave propagation in the solar atmosphere: II. Nonlinear response to adiabatic wave excitation. Astron. Astrophys. 294, 241–251 (1995)

    ADS  Google Scholar 

  22. Museliak, Z. E. & Ulmschneider, P. Atmospheric oscillations in solar magnetic flux tubes. I. Excitation by longitudinal waves and random pulses. Astron. Astrophys. 400, 1057–1064 (2003)

    ADS  Article  Google Scholar 

  23. Carlsson, M. & Stein, R. F. Does a nonmagnetic solar chromosphere exist? Astrophys. J. 440, L29–L32 (1995)

    ADS  Article  Google Scholar 

  24. Schrijver, C. J. & Title, A. M. The magnetic connection between the solar photosphere and the corona. Astrophys. J. 597, L165–L168 (2003)

    ADS  Article  Google Scholar 

  25. Schrijver, C. J. et al. A new view of the solar outer atmosphere by the transition region and coronal explorer. Sol. Phys. 187, 261–302 (1999)

    ADS  Article  Google Scholar 

  26. Handy, B. N. et al. The transition region and coronal explorer. Sol. Phys. 187, 229–260 (1999)

    ADS  CAS  Article  Google Scholar 

  27. De Moortel, I., Ireland, J., Walsh, R. W. & Hood, A. W. Longitudinal intensity oscillations in coronal loops observed with TRACE — I. Overview of measured parameters. Sol. Phys. 209, 61–88 (2002)

    ADS  Article  Google Scholar 

  28. Lindsey, C. et al. Extreme-infrared brightness profile of the solar chromosphere obtained during the total eclipse of 1991. Nature 358, 308–310 (1992)

    ADS  Article  Google Scholar 

  29. De Pontieu, B., Tarbell, T. D. & Erdélyi, R. Correlations on arcsecond scales between chromospheric and transition region emission in active regions. Astrophys. J. 590, 502–518 (2003)

    ADS  CAS  Article  Google Scholar 

  30. Rae, I. C. & Roberts, B. Pulse propagation in a magnetic flux tube. Astrophys. J. 256, 761–767 (1982)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA, the UK Particle Physics Research Council (PPARC) and NSF Hungary. The Swedish Solar Telescope is operated on the island of La Palma by the Royal Swedish Academy of Sciences in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. R.E. thanks M. Kéray for encouragement. We thank C.J. Schrijver, T. Tarbell, M. DeRosa and A. Title for discussions, and M. Carlsson for pointing out the importance of 3 min oscillations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Pontieu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Pontieu, B., Erdélyi, R. & James, S. Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536–539 (2004). https://doi.org/10.1038/nature02749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02749

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing