Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperation and competition in pathogenic bacteria

Abstract

Explaining altruistic cooperation is one of the greatest challenges for evolutionary biology1,2,3. One solution to this problem is if costly cooperative behaviours are directed towards relatives4,5. This idea of kin selection has been hugely influential and applied widely from microorganisms to vertebrates2,3,4,5,6,7,8,9,10. However, a problem arises if there is local competition for resources, because this leads to competition between relatives, reducing selection for cooperation3,11,12,13,14. Here we use an experimental evolution approach to test the effect of the scale of competition, and how it interacts with relatedness. The cooperative trait that we examine is the production of siderophores, iron-scavenging agents, in the pathogenic bacterium Pseudomonas aeruginosa15,16,17. As expected, our results show that higher levels of cooperative siderophore production evolve in the higher relatedness treatments. However, our results also show that more local competition selects for lower levels of siderophore production and that there is a significant interaction between relatedness and the scale of competition, with relatedness having less effect when the scale of competition is more local. More generally, the scale of competition is likely to be of particular importance for the evolution of cooperation in microorganisms, and also the virulence of pathogenic microorganisms, because cooperative traits such as siderophore production have an important role in determining virulence6,9,17,18,19.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scale of competition and kin selection theory.
Figure 2: Experimental design.
Figure 3: The evolution of cooperation in response to relatedness and the scale of competition.

References

  1. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (W.H. Freeman, Oxford, 1995)

    Google Scholar 

  2. Hamilton, W. D. Narrow Roads of Gene Land: I Evolution of Social Behaviour (W.H. Freeman, Oxford, 1996)

    Google Scholar 

  3. Frank, S. A. Foundations of Social Evolution (Princeton Univ. Press, Princeton, 1998)

    Google Scholar 

  4. Hamilton, W. D. The evolution of altruistic behaviour. Am. Nat. 97, 354–356 (1963)

    Article  Google Scholar 

  5. Hamilton, W. D. The genetical evolution of social behaviour, I & II. J. Theor. Biol. 7, 1–52 (1964)

    Article  CAS  Google Scholar 

  6. Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001)

    Article  Google Scholar 

  7. Keller, L. & Reeve, H. K. in Encyclopedia of Evolution (ed. Pagel, M. D.) 595–600 (Oxford Univ. Press, Oxford, 2002)

    Google Scholar 

  8. Griffin, A. S. & West, S. A. Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. Science 302, 634–636 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Velicer, G. J. Social strife in the microbial world. Trends Microbiol. 11, 330–337 (2003)

    Article  CAS  Google Scholar 

  10. Queller, D. C. & Strassmann, J. E. Kin selection and social insects. Bioscience 48, 165–175 (1998)

    Article  Google Scholar 

  11. Queller, D. C. Genetic relatedness in viscous populations. Evol. Ecol. 8, 70–73 (1994)

    Article  Google Scholar 

  12. West, S. A., Pen, I. & Griffin, A. S. Cooperation and competition between relatives. Science 296, 72–75 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Taylor, P. D. Altruism in viscous populations - an inclusive fitness model. Evol. Ecol. 6, 352–356 (1992)

    Article  Google Scholar 

  14. Wilson, D. S., Pollock, G. B. & Dugatkin, L. A. Can altruism evolve in purely viscous populations. Evol. Ecol. 6, 331–341 (1992)

    Article  Google Scholar 

  15. Guerinot, M. L. Microbial iron transport. Annu. Rev. Microbiol. 48, 743–772 (1994)

    Article  CAS  Google Scholar 

  16. Ratledge, C. & Dover, L. G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881–941 (2000)

    Article  CAS  Google Scholar 

  17. West, S. A. & Buckling, A. Cooperation, virulence and siderophore production in bacterial parasites. Proc. R. Soc. Lond. B 270, 37–44 (2003)

    Article  Google Scholar 

  18. Brown, S. P. Cooperation and conflict in host-manipulating parasites. Proc. R. Soc. Lond. B 266, 1899–1904 (1999)

    Article  Google Scholar 

  19. Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does multiple infection select for raised virulence? Trends Microbiol. 10, 401–405 (2002)

    Article  CAS  Google Scholar 

  20. Grafen, A. in Behavioural Ecology: An Evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 62–84 (Blackwell Scientific Publications, Oxford, 1984)

    Google Scholar 

  21. Frank, S. A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996)

    Article  CAS  Google Scholar 

  22. West, S. A., Murray, M. G., Machado, C. A., Griffin, A. S. & Herre, E. A. Testing Hamilton's rule with competition between relatives. Nature 409, 510–513 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Velicer, G. J. & Yu, Y. N. Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature 425, 75–78 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Pepper, J. W. Relatedness in trait group models of social evolution. J. Theor. Biol. 206, 355–368 (2000)

    Article  CAS  Google Scholar 

  26. De Vos, D. et al. Study of pyroverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutants. Arch. Microbiol. 175, 384–388 (2001)

    Article  CAS  Google Scholar 

  27. Meyer, J. M., Neely, A., Stintzi, A., Georges, C. & Holder, I. A. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64, 518–523 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Strassmann, J. E., Zhu, Y. & Queller, D. C. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408, 965–967 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature 414, 751–756 (2002)

    Article  ADS  Google Scholar 

  30. Hoogkamp-Korstanje, J. A. A., Meis, J. F. G. M., Kissing, J., van der Laag, J. & Melchers, W. J. G. Risk of cross-colonization and infection by Pseudomonas aeruginosa in a holiday camp for cystic fibrosis patients. J. Clin. Microbiol. 33, 572–575 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.-M. Meyer for supplying strains; A. Gardner and D. Shuker for discussion and comments; A. Duncan and A. Graham for laboratory assistance; staff at the Bega Public Library, NSW, Australia, for internet access; BBSRC, NERC and Royal Society for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashleigh S. Griffin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Griffin, A., West, S. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004). https://doi.org/10.1038/nature02744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02744

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing