Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation


Voltage-dependent ion channels serve as field-effect transistors by opening a gate in response to membrane voltage changes1. The gate's response to voltage is mediated by voltage sensors2, which are arginine-containing structures that must move with respect to the membrane electric field. We have analysed by electron microscopy a voltage-dependent K+ channel from Aeropyrum pernix (KvAP)3. Fab fragments were attached to ‘voltage sensor paddles’ and identified in the electron microscopy map at 10.5 Å resolution. The extracellular surface location of the Fab fragments in the map is consistent with the membrane-depolarized, open conformation of the channel in electrophysiological experiments. Comparison of the map with a crystal structure4 demonstrates that the voltage sensor paddles are ‘up’ (that is, near the channel's extracellular surface) and situated at the protein–lipid interface. This finding supports the hypothesis that in response to changes in voltage the sensors move at the protein–lipid interface5 rather than in a gating pore surrounded by protein6,7.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure of the KvAP–33H1 complex at 10.5 Å.
Figure 2: Docking of the crystal structures of the KvAP pore and 33H1Fab fragments into the electron microscope map.
Figure 3: Two possible orientations of the paddle relative to the pore.
Figure 4: The S4 probably bends and becomes the S4–S5 linker at Gly 134.


  1. Sigworth, F. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994)

    CAS  Article  Google Scholar 

  2. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    CAS  Article  Google Scholar 

  3. Ruta, V., Jiang, Y., Lee, A., Chen, J. & MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422, 180–185 (2003)

    ADS  CAS  Article  Google Scholar 

  4. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    ADS  CAS  Article  Google Scholar 

  5. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003)

    ADS  CAS  Article  Google Scholar 

  6. Bezanilla, F. Voltage sensor movements. J. Gen. Physiol. 120, 465–473 (2002)

    CAS  Article  Google Scholar 

  7. Horn, R. Coupled movements in voltage-gated ion channels. J. Gen. Physiol. 120, 449–453 (2002)

    CAS  Article  Google Scholar 

  8. Frank, J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31, 303–319 (2002)

    CAS  Article  Google Scholar 

  9. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995)

    CAS  Article  Google Scholar 

  10. Adrian, M., Dubochet, J., Fuller, S. D. & Harris, J. R. Cryo-negative staining. Micron 29, 145–160 (1998)

    CAS  Article  Google Scholar 

  11. Golas, M. M., Sander, B., Will, C. L., Luhrmann, R. & Stark, H. Molecular architecture of the multiprotein splicing factor SF3b. Science 300, 980–984 (2003)

    ADS  CAS  Article  Google Scholar 

  12. Saxton, W. O. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127, 127–138 (1982)

    CAS  Article  Google Scholar 

  13. van Heel, M. Similarity measures between images. Ultramicroscopy 21, 95–100 (1987)

    Article  Google Scholar 

  14. Conway, J. F. et al. Characterization of a conformational epitope on hepatitis B virus core antigen and quasiequivalent variations in antibody binding. J. Virol. 77, 6466–6473 (2003)

    CAS  Article  Google Scholar 

  15. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003)

    CAS  Article  Google Scholar 

  16. Laine, M. et al. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39, 467–481 (2003)

    CAS  Article  Google Scholar 

  17. Gandhi, C. S., Clark, E., Loots, E., Pralle, A. & Isacoff, E. Y. The orientation and molecular movement of a K+ channel voltage-sensing domain. Neuron 40, 515–525 (2003)

    CAS  Article  Google Scholar 

  18. Neale, E. J., Elliott, D. J., Hunter, M. & Sivaprasadarao, A. Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel. J. Biol. Chem. 278, 29079–29085 (2003)

    CAS  Article  Google Scholar 

  19. Chandy, K. G. & Gutman, G. A. in Ligand and Voltage-Gated Channels (ed. North, R. A.) 1–72 (CRC, Boca Raton, 1995)

    Google Scholar 

  20. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    CAS  Article  Google Scholar 

  21. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    CAS  Article  Google Scholar 

  22. Orlova, E. V. et al. Structure of keyhole limpet hemocyanin type 1 (KLH1) at 15 Å resolution by electron cryomicroscopy and angular reconstitution. J. Mol. Biol. 271, 417–437 (1997)

    CAS  Article  Google Scholar 

  23. Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000)

    CAS  Article  Google Scholar 

  24. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    CAS  Article  Google Scholar 

  25. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996)

    CAS  Article  Google Scholar 

  26. van Heel, M. Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–123 (1987)

    CAS  Article  Google Scholar 

  27. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    CAS  Article  Google Scholar 

  28. Sander, B., Golas, M. M. & Stark, H. Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra. J. Struct. Biol. 142, 392–401 (2003)

    CAS  Article  Google Scholar 

  29. Hawkes, P. W. in Computer Processing of Electron Microscopic Images (ed. Hawkes, P. W.) 1–33 (Springer, Berlin, 1980)

    Google Scholar 

  30. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

Download references


We thank members of the MacKinnon lab, S. Darst, N. Opalka and D. Stokes for helpful discussions. This work was supported by grants from the NIH to D.N.W. and R.M. R.M is an investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Roderick MacKinnon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure

Comparison of class averages with projections from the electron microscopy map at representative orientations. (DOC 532 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, QX., Wang, DN. & MacKinnon, R. Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation. Nature 430, 806–810 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing