Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An unusual isotope effect in a high-transition-temperature superconductor

Abstract

In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-Tc) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in Tc of optimally doped Bi2Sr2CaCu2O8+δ (Bi2212; ref. 1) upon oxygen isotope substitution (16O → 18O leads to Tc decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as ‘incoherent peaks’. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap—that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture2, where the singlet pairing of electrons and the electron–lattice coupling mutually enhance each other.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Isotope-induced changes of the nodal dispersion.
Figure 2: Isotope-induced changes of the off-nodal dispersions in the superconducting state.
Figure 3: Decrease of the isotope-induced changes in the normal state.

References

  1. 1

    Franck, J. P. in Physical Properties of High Temperature Superconductors IV (ed. Ginsberg, D. M.) 189–293 (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  2. 2

    Pytte, E. Peierls instability in Heisenberg chains. Phys. Rev. B 10, 4637–4642 (1974)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Müller, K. A. On the oxygen isotope effect and apex anharmonicity in high-Tc cuprates. Z. Phys. B 80, 193–201 (1990)

    ADS  Article  Google Scholar 

  4. 4

    Bianconi, A. et al. Determination of the local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4 . Phys. Rev. Lett. 76, 3412–3415 (1996)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Gweon, G.-H., Zhou, S. Y. & Lanzara, A. Strong influence of phonons on the electron dynamics of Bi2Sr2CaCu2O8+δ . J. Phys. Chem. Solids (in the press)

  6. 6

    Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Allen, J. W., Gweon, G.-H., Claessen, R. & Matho, K. Fermi liquids and non-Fermi liquids—The view from photoemission. J. Phys. Chem. Solids 56, 1849–1853 (1995)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Bogdanov, P. V. et al. Evidence for an energy scale for quasiparticle dispersion in Bi2Sr2CaCu2O8 . Phys. Rev. Lett. 85, 2581–2584 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kaminski, A. et al. Renormalization of spectral lineshape and dispersion below Tc in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 86, 1070–1073 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Johnson, P. D. et al. Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 87, 177007–177010 (2001)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Zhou, X. J. et al. Universal nodal Fermi velocity. Nature 423, 398 (2003)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Sato, T. et al. Observation of band renormalization effects in hole-doped high-Tc superconductors. Phys. Rev. Lett. 91, 157003 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Eliashberg, G. M. Interactions between electrons and lattice vibrations in a superconductor. Zh. Eksp. Teor. Fiz. 38, 966–976 (1960); Sov. Phys. JETP 11, 696–702 (1960)

    MathSciNet  CAS  Google Scholar 

  14. 14

    Verga, S., Knigavko, A. & Marsiglio, F. Inversion of angle-resolved photoemission measurements in high-Tc cuprates. Phys. Rev. B 67, 054503 (2003)

    ADS  Article  Google Scholar 

  15. 15

    Hwang, J., Timusk, T. & Gu, G. D. High-transition-temperature superconductivity in the absence of the magnetic-resonance mode. Nature 427, 714–717 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Rotenberg, E., Schaefer, J. & Kevan, S. D. Coupling between adsorbate vibrations and an electronic surface state. Phys. Rev. Lett. 84, 2925–2928 (2000)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Cuk, T. et al. Coupling of the B1g phonon to the anti-nodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ . Preprint condmat/0403521 at 〈http://www.lanl.gov〉 (2004); Phys. Rev. Lett. (submitted)

  18. 18

    Zhao, G. M., Hunt, M. B., Keller, H. & Müller, K. A. Evidence for polaronic supercarriers in the copper oxide superconductors La2-xSrxCuO4 . Nature 385, 236–240 (1997)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Crespi, V. H. & Cohen, M. L. Anharmonic phonons and the anomalous isotope effect in La2-xSrxCuO4 . Phys. Rev. B 44, 4712–4715 (1991)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Sawatzky, G. A. Testing Fermi liquid models. Nature 342, 480–481 (1989)

    ADS  Article  Google Scholar 

  21. 21

    Shen, Z.-X. & Schrieffer, J. R. Momentum, temperature, and doping dependence of photoemission lineshape and implications for the nature of the pairing potential in high-Tc superconducting materials. Phys. Rev. Lett. 78, 1771–1774 (1997)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Norman, M. R. et al. Unusual dispersion and line shape of the superconducting state spectra of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 79, 3506–3509 (1997)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Paci P. et al. Polaronic and nonadiabatic phase diagram from anomalous isotope effects. Preprint condmat/0405053 at 〈http://www.lanl.gov〉 (2004).

  24. 24

    Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Nature 413, 282–285 (2001)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Crawford, M. K. et al. Oxygen isotope effect and structural phase transitions in La2CuO4-based superconductors. Science 250, 1390–1394 (1990)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lanzara, A. et al. Oxygen-isotope shift of the charge-stripe ordering temperature in La2-xSrxCuO4 from X-ray absorption spectroscopy. J. Phys. Condens. Matter 11, L541–L546 (1999)

    CAS  Article  Google Scholar 

  28. 28

    Shengelaya, A., Brunn, M., Kochelaev, B. I., Safina, A., Conder, K. M. & Müller, K. A. A metallic phase in lightly doped La2-xSrxCuO4 observed by electron paramagnetic resonance. Preprint cond-mat/0310152 at 〈http://www.lanl.gov〉 (2003); Phys. Rev. Lett. (in the press)

  29. 29

    Zech, D., Keller, H., Conder, K., Kaldis, E., Liarokapis, E., Poulakis, N. & Müller, K. A. Site-selective oxygen isotope effect in optimally doped YBa2Cu3O6+x . Nature 371, 681–683 (1994)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Zimanyi, G. T., Kivelson, S. A. & Luther, A. Superconductivity from predominantly repulsive interactions in quasi one-dimensional systems. Phys. Rev. Lett. 60, 2089–2092 (1988)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to K. A. Müller, A. Bianconi, N. L. Saini, D. Pines, A. Bill, V. Z. Kresin, S. A. Kivelson, A. J. Leggett, J. Clarke, J. Orenstein, M. L. Cohen, L. Pietronero, E. Cappelluti, J. C. Davis, J. W. Allen, A. S. Alexandrov, J. C. Phillips, A. H. Castro Neto, C. Castellani, A. Bussman Holder, D. Mihailovic, G. Deutscher, C. Bernhard, S. Uchida and T. Schneider for discussions. We thank Z. X. Shen, Z. Hussain, D. S. Chemla and N. V. Smith for support in the initial stage of the project. The work at UC Berkeley and LBNL was supported by the Department of Energy's Office of Basic Energy Science, Division of Materials Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Lanzara.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods

Description of isotope substitution process used. (DOC 22 kb)

Supplementary Figure

Fermi surface maps for the two isotope samples compared. (DOC 79 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gweon, GH., Sasagawa, T., Zhou, S. et al. An unusual isotope effect in a high-transition-temperature superconductor. Nature 430, 187–190 (2004). https://doi.org/10.1038/nature02731

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing