Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for template-independent RNA polymerization


The 3′-terminal CCA nucleotide sequence (positions 74–76) of transfer RNA is essential for amino acid attachment1 and interaction with the ribosome2,3,4 during protein synthesis. The CCA sequence is synthesized de novo and/or repaired by a template-independent RNA polymerase, ‘CCA-adding enzyme’, using CTP and ATP as substrates5. Despite structural and biochemical studies5,6,7,8, the mechanism by which the CCA-adding enzyme synthesizes the defined sequence without a nucleic acid template remains elusive. Here we present the crystal structure of Aquifex aeolicus CCA-adding enzyme, bound to a primer tRNA lacking the terminal adenosine and an incoming ATP analogue, at 2.8 Å resolution. The enzyme enfolds the acceptor T helix of the tRNA molecule. In the catalytic pocket, C75 is adjacent to ATP, and their base moieties are stacked. The complementary pocket for recognizing C74-C75 of tRNA forms a ‘protein template’ for the penultimate two nucleotides, mimicking the nucleotide template used by template-dependent polymerases. These results are supported by systematic analyses of mutants. Our structure represents the ‘pre-insertion’ stage of selecting the incoming nucleotide and provides the structural basis for the mechanism underlying template-independent RNA polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overall structure of the ternary complex of Aa.LC, tRNA-CC and AMPcPP.
Figure 2: Stereoview of the primer C74-C75 and the incoming ATP.
Figure 3: In vitro AMP incorporation.
Figure 4: Comparison of template-independent and template-dependent RNA polymerases.


  1. Sprinzl, M. & Cramer, F. The -C-C-A end of tRNA and its role in protein biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 22, 1–69 (1979)

    Article  CAS  Google Scholar 

  2. Green, R. & Noller, H. F. Ribosomes and translation. Annu. Rev. Biochem. 66, 679–716 (1997)

    Article  CAS  Google Scholar 

  3. Kim, D. F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999)

    Article  CAS  Google Scholar 

  4. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Deutscher, M. P. in Enzymes of Nucleic Acid Synthesis and Modification. RNA Enzymes vol. 2 (ed. Jacob, S. T.) 159–183 (CRC, Boca Raton, Fl, 1983)

    Google Scholar 

  6. Yue, D., Weiner, A. M. & Maizels, N. The CCA-adding enzyme has a single active site. J. Biol. Chem. 273, 29693–29700 (1998)

    Article  CAS  Google Scholar 

  7. Shi, P. Y., Maizels, N. & Weiner, A. M. CCA addition by tRNA nucleotidyltransferase: polymerization without translocation? EMBO J. 17, 3197–3206 (1998)

    Article  CAS  Google Scholar 

  8. Hou, Y. M. Unusual synthesis by the Escherichia coli CCA-adding enzyme. RNA 6, 1031–1043 (2000)

    Article  CAS  Google Scholar 

  9. Holm, L. & Sander, C. DNA polymerase β belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem. Sci. 20, 345–347 (1995)

    Article  CAS  Google Scholar 

  10. Martin, G. & Keller, W. Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. EMBO J. 15, 2593–2603 (1996)

    Article  CAS  Google Scholar 

  11. Yue, D., Maizels, N. & Weiner, A. M. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA 2, 895–908 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, F. et al. Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP. Cell 111, 815–824 (2002)

    Article  CAS  Google Scholar 

  13. Okabe, M. et al. Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure. EMBO J. 22, 5918–5927 (2003)

    Article  CAS  Google Scholar 

  14. Xiong, Y., Li, F., Wang, J., Weiner, A. M. & Steitz, T. A. Crystal structures of an archaeal class I CCA-adding enzyme and its nucleotide complexes. Mol. Cell 12, 1165–1172 (2003)

    Article  CAS  Google Scholar 

  15. Tomita, K. & Weiner, A. M. Collaboration between CC- and A-adding enzymes to build and repair the 3′-terminal CCA of tRNA in Aquifex aeolicus. Science 294, 1334–1336 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Tomita, K. & Weiner, A. M. Closely related CC- and A-adding enzymes collaborate to construct and repair the 3′-terminal CCA of tRNA in Synechocystis sp. and Deinococcus radiodurans. J. Biol. Chem. 277, 48192–48198 (2003)

    Article  Google Scholar 

  17. Augustin, M. A. et al. Crystal structure of the human CCA-adding enzyme: insights into template-independent polymerization. J. Mol. Biol. 328, 985–994 (2003)

    Article  CAS  Google Scholar 

  18. Brautigam, C. A. & Steitz, T. A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 8, 54–63 (1998)

    Article  CAS  Google Scholar 

  19. Hegg, L. A. & Thurlow, D. L. Cytidines in tRNAs that are required intact by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. Nucleic Acids Res. 18, 5975–9597 (1990)

    Article  CAS  Google Scholar 

  20. Xiong, Y. & Steitz, T. A. Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Nature doi:10.1038/nature02711 (this issue)

  21. Shi, P. Y., Weiner, A. M. & Maizels, N. A top-half tDNA minihelix is a good substrate for the eubacterial CCA-adding enzyme. RNA 4, 276–284 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Temiakov, D. et al. Structural basis for substrate selection by T7 RNA polymerase. Cell 116, 381–391 (2004)

    Article  CAS  Google Scholar 

  23. Yin, Y. W. & Steitz, T. A. The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116, 393–404 (2004)

    Article  CAS  Google Scholar 

  24. Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264, 1891–1903 (1994)

    Article  ADS  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  26. Weeks, C. M. & Miller, R. The design and implementation of SnB version 2.0. J. Appl. Crystallogr. 32, 120–124 (1999)

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project Number 4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  28. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  Google Scholar 

  29. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  30. Rice, L. M. & Brunger, A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins Struct. Funct. Genet. 19, 277–290 (1994)

    Article  CAS  Google Scholar 

  31. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

Download references


We thank A. M. Weiner for the Aa.LC plasmids; and M. Kawamoto and H. Sakai for help with data collection at SPring-8. This work was supported by Kurata Memorial Hitachi Science and Technology Foundation, Takeda Science Foundation, Foundation of Advanced Technology Institute and a Grant-in-aid for Young Scientists (to K.T.); by Asahi Glass Foundation (to S.F.); by a grant from the Ministry of Education, Culture, Sports, Science and Technology (to N.T.); and by a PRESTO Program grant from Japan Science and Technology and a Naito Foundation grant (to O.N.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Osamu Nureki.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

Data collection and refinement statistics (DOC 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tomita, K., Fukai, S., Ishitani, R. et al. Structural basis for template-independent RNA polymerization. Nature 430, 700–704 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing