Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cambrian origins and affinities of an enigmatic fossil group of arthropods


Euthycarcinoids are one of the most enigmatic arthropod groups, having been assigned to nearly all major clades of Arthropoda. Recent work has endorsed closest relationships with crustaceans1 or a myriapod–hexapod assemblage2, a basal position in the Euarthropoda3, or a placement in the Hexapoda4 or hexapod stem group5. Euthycarcinoids are known from 13 species ranging in age from Late Ordovician or Early Silurian to Middle Triassic, all in freshwater or brackish water environments6. Here we describe a euthycarcinoid from marine strata in Argentina dating from the latest Cambrian period, extending the group's record back as much as 50 million years. Despite its antiquity and marine occurrence, the Cambrian species demonstrates that morphological details were conserved in the transition to fresh water. Trackways in the same unit as the euthycarcinoid strengthen arguments that similar traces of subaerial origin from Cambro-Ordovician rocks were made by euthycarcinoids7,8. Large mandibles in euthycarcinoids6,9 are confirmed by the Cambrian species. A morphology-based phylogeny resolves euthycarcinoids as stem-group Mandibulata, sister to the Myriapoda and Crustacea plus Hexapoda.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Holotype of Apankura machu.
Figure 2
Figure 3: Strict consensus of the nine shortest cladograms for euthycarcinoids and extant Euarthropoda favoured by successive weights and implied weights for concavity functions k = 1 to k = 6.
Figure 4: Trackway from the Casa Colorada Member, JUY-P 25.


  1. Wilson, H. M. & Almond, J. E. New euthycarcinoids and an enigmatic arthropod from the British Coal Measures. Palaeontology 44, 143–156 (2001)

    Article  Google Scholar 

  2. Edgecombe, G. D. & Morgan, H. Synaustrus and the euthycarcinoid puzzle. Alcheringa 23, 193–213 (1999)

    Article  Google Scholar 

  3. Schram, F. R. & Emerson, M. J. Arthropod Pattern Theory: a new approach to arthropod phylogeny. Mem. Qld. Mus. 31, 1–18 (1991)

    Google Scholar 

  4. Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M. & Sneath, P. H. A. in Arthropod Fossils and Phylogeny (ed. Edgecombe, G. D.) 33–105 (Columbia Univ. Press, New York, 1998)

    Google Scholar 

  5. McNamara, K. J. & Trewin, N. H. A euthycarcinoid arthropod from the Silurian of Western Australia. Palaeontology 36, 319–335 (1993)

    Google Scholar 

  6. Anderson, L. I. & Trewin, N. H. An Early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland. Palaeontology 46, 467–509 (2003)

    Article  Google Scholar 

  7. MacNaughton, R. B. et al. First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada. Geology 30, 391–394 (2002)

    ADS  Article  Google Scholar 

  8. Trewin, N. H. & McNamara, K. J. Arthropods invade the land: Trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?Late Silurian) of Kalbarri, Western Australia. Trans. R. Soc. Edin. Earth Sci. 85, 117–210 (1995)

    Google Scholar 

  9. Gall, J.-C. & Grauvogel, L. Un arthropode peu connu. Le genre Euthycarcinus Handlirsch. Ann. Paléontol. Invert. 50, 1–18 (1964)

    Google Scholar 

  10. Tortello, M. F. & Esteban, S. B. Trilobites del Cámbrico Tardio de la Formación Lampazar (sierra de Cajas, Jujuy, Argentina). Implicancias bioestratigráficas y paleoambientales. Ameghiniana 40, 323–344 (2003)

    Google Scholar 

  11. Buatois, L. A. & Mángano, M. G. Sedimentary facies and depositional evolution of the Upper Cambrian-Lower Ordovician Santa Rosita Formation in Northwest Argentina. J. S. Am. Earth Sci. 16, 343–363 (2003)

    Article  Google Scholar 

  12. Bergström, J. Morphology and systematics of early arthropods. Abh. Naturw. Ver. Hamb. 23, 7–42 (1980)

    Google Scholar 

  13. Schram, F. R. & Rolfe, W. D. I. New euthycarcinoid arthropods from the Upper Pennsylvanian of France and Illinois. J. Paleontol. 56, 1434–1450 (1982)

    Google Scholar 

  14. Schultka, S. Erster Nachweis der Gattung Euthycarcinus (Arthropoda) aus dem Oberkarbon von Ibbenbüren (Nordrhein-Westfalen, Deutschland). Paläontologische Zeitschrift 65, 319–332 (1991)

    Article  Google Scholar 

  15. Bitsch, J. The arthropod mandible: morphology and evolution. Phylogenetic implications. Ann. Soc. Entomol. Fr. 37, 305–321 (2001)

    Google Scholar 

  16. Edgecombe, G. D., Richter, S. & Wilson, G. D. F. The mandibular gnathal edges: homologous structures across the Mandibulata? Afr. Invert. 44, 115–135 (2003)

    Google Scholar 

  17. Kusche, K., Hembach, A., Hagner-Holler, S., Gebauer, W. & Burmester, T. Complete subunit sequences, structure and evolution of the 6 × 6-mer hemocyanin from the common house centipede, Scutigera coleoptrata. Eur. J. Biochem. 270, 2860–2868 (2003)

    CAS  Article  Google Scholar 

  18. Mallatt, J. M., Garey, J. R. & Shultz, J. W. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178–191 (2004)

    CAS  Article  Google Scholar 

  19. Negrisolo, E., Minelli, A. & Valle, G. The mitochondrial genome of the house centipede Scutigera and the monophyly versus paraphyly of myriapods. Mol. Biol. Evol. 21, 770–780 (2004)

    CAS  Article  Google Scholar 

  20. Richter, S. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org. Divers. Evol. 2, 217–237 (2002)

    Article  Google Scholar 

  21. Farris, J. S. A successive approximations approach to character weighting. Syst. Zool. 18, 374–385 (1969)

    Article  Google Scholar 

  22. Goloboff, P. A. Estimating character weights during tree search. Cladistics 9, 83–91 (1993)

    Article  Google Scholar 

  23. Müller, C. H. G., Rosenberg, J., Richter, S. & Meyer-Rochow, V. B. The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept. Zoomorphology 122, 191–209 (2003)

    Article  Google Scholar 

  24. Trewin, N. H. A draft system for the identification and description of arthropod trackways. Palaeontology 37, 811–823 (1994)

    Google Scholar 

Download references


We thank C. Colarich, F. Rivero and E. Piovano for assistance in preparing Figs 1 and 2. Support was provided by CONICET and ANPCyT-FONCyT.

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. E. Vaccari.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

This includes a list of the characters used in phylogenetic analysis, and supplementary references. (DOC 199 kb)

Supplementary Table

Taxa and character codings used in the phylogenetic analysis. (DOC 58 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vaccari, N., Edgecombe, G. & Escudero, C. Cambrian origins and affinities of an enigmatic fossil group of arthropods. Nature 430, 554–557 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing