The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle


MgSiO3 perovskite has been assumed to be the dominant component of the Earth's lower mantle, although this phase alone cannot explain the discontinuity in seismic velocities observed 200–300 km above the core–mantle boundary (the D″ discontinuity) or the polarization anisotropy observed in the lowermost mantle1. Experimental and theoretical studies that have attempted to attribute these phenomena to a phase transition in the perovskite phase have tended to simply confirm the stability of the perovskite phase2,3,4,5,6. However, recent in situ X-ray diffraction measurements have revealed7 a transition to a ‘post-perovskite’ phase above 125 GPa and 2,500 K—conditions close to those at the D″ discontinuity. Here we show the results of first-principles calculations of the structure, stability and elasticity of both phases at zero temperature. We find that the post-perovskite phase becomes the stable phase above 98 GPa, and may be responsible for the observed seismic discontinuity and anisotropy in the lowermost mantle. Although our ground-state calculations of the unit cell do not include the effects of temperature and minor elements, they do provide a consistent explanation for a number of properties of the D″ layer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The unit cell structures of MgSiO3.
Figure 2: The enthalpy difference between the perovskite phase and post-perovskite phase as a function of pressure.
Figure 3: The variation of compressional (vP) and shear (vS) wave velocities as a function of propagation direction.


  1. 1

    Poirier, J. P. Introduction to the Physics of the Earth's Interior (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  2. 2

    Fiquet, G., Dewaele, A., Andrault, D., Kunz, M. & Le Bihan, T. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett. 27, 21–24 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Andrault, D. Evaluation of (Mg, Fe) partitioning between silicate perovskite and magnesiowustite up to 120 GPa and 2300 K. J. Geophys. Res. 106, 2079–2087 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Stixrude, L. & Cohen, R. E. Stability of orthorhombic MgSiO3 perovskite in the Earth's lower mantle. Nature 364, 613–616 (1993)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Wentzcovitch, R. M., Ross, N. L. & Price, G. D. Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Phys. Earth Planet. Inter. 90, 101–112 (1995)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Warren, M. C., Ackland, G. J., Karki, B. B. & Clark, S. J. Phase transitions in silicate perovskites from first principles. Mineral. Mag. 62, 585–598 (1998)

    CAS  Article  Google Scholar 

  7. 7

    Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . Science 304, 855–858 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Noel, H. & Padiou, J. Structure crystalline de FeUS3 . Acta Crystallogr. B 32, 1593–1595 (1976)

    Article  Google Scholar 

  9. 9

    Narducci, A. A. & Ibers, J. A. The related compounds MThTe3(M = Mn, Mg) and ACuThSe3(A = K, Cs): Syntheses and characterization. Inorg. Chem. 39, 688–691 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Ijjaali, I., Mitchell, K., Huang, F. Q. & Ibers, J. A. Syntheses and characterization of the actinide manganese selenides ThMnSe3 and UMnSe3 . J. Solid State Chem. 177, 257–261 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Karki, B. B. et al. Structure and elasticity of MgO at high pressure. Am. Mineral. 82, 51–60 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Karki, B. B. et al. Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures. Am. Mineral. 82, 635–638 (1997)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Wysession, M. E., et al. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 273–297 (American Geophysical Union, Washington DC, 1998)

    Google Scholar 

  14. 14

    Sidorin, I., Gurnis, M. & Helmberger, D. V. Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286, 1326–1331 (1999)

    CAS  Article  Google Scholar 

  15. 15

    Lay, T., Williams, Q., Garnero, E. J., Kellogg, L. & Wysession, M. E. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 299–318 (American Geophysical Union, Washington DC, 1998)

    Google Scholar 

  16. 16

    Panning, M. & Romanowicz, B. Inferences on flow at the base of Earth's mantle based on seismic anisotropy. Science 303, 351–353 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Montagner, J. P. & Nataf, H. C. A simple method for inverting the azimuthal anisotropy of surface waves. J. Geophys. Res. 91, 511–520 (1986)

    ADS  Article  Google Scholar 

  18. 18

    Wentzcovitch, R. M., Karki, B. B., Karato, S. & Da Silva, C. R. S. High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications. Earth Planet. Sci. Lett. 164, 371–378 (1998)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Karato, S., Zhang, S. & Wenk, H. R. Superplasticity in Earth's lower mantle: evidence from seismic anisotropy and rock physics. Science 270, 458–461 (1995)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Masters, G. & Laske, G. in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (eds Karato, S., Forte, A., Liebermann, R., Masters, G. & Stixrude, L.) 63–87 (American Geophysical Union, Washington DC, 2000)

    Google Scholar 

  21. 21

    Oganov, A. R., Brodholt, J. P. & Price, G. D. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle. Nature 411, 934–937 (2001)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Wentzcovitch, R. M., Karki, B. B., Cococcioni, M. & de Gironcoli, S. Thermoelastic properties of MgSiO3-perovskite: insights on the nature of the Earth's lower mantle. Phys. Rev. Lett. 92, 018501 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Murakami, M. Phase Transition of Lower Mantle Mineral and its Geophysical Implications Thesis, Tokyo Institute of Technology (2004)

    Google Scholar 

  24. 24

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Civalleri, B. & Harrison, N. M. New ultrasoft pseudopotentials for the study of silicates. Mol. Simulat. 28, 213–237 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Brodholt, J. P., Organov, A. R. & Price, G. D. Computational mineral physics and the physical properties of perovskite. Phil. Trans. R. Soc. Lond. A 360, 2507–2520 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28

    Nielsen, O. H. & Martin, R. M. First principles calculation of stress. Phys. Rev. Lett. 50, 697–700 (1983)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Francis, G. P. & Payne, M. C. Finite basis set corrections to total energy pseudopotential calculations. J. Phys. Condens. Matter 2, 4395–4404 (1990)

    ADS  Article  Google Scholar 

  30. 30

    Iitaka, T. & Ebisuzaki, T. First-principles calculation of elastic properties of solid argon at high pressures. Phys. Rev. B 65, 012103 (2002)

    ADS  Article  Google Scholar 

Download references


We thank S. Kaneshima for discussions, D.M. Bird for providing CASTEP codes, N.M. Harrison for pseudopotentials and the computer centres of RIKEN and NIG for access to the supercomputers. This work was also supported by JASRI/SPring-8 and IFREE/JAMSTEC.

Author information



Corresponding author

Correspondence to T. Iitaka.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure

The anisotropic compressibility of the PP-phase. (DOC 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iitaka, T., Hirose, K., Kawamura, K. et al. The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle. Nature 430, 442–445 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing