Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs

A Corrigendum to this article was published on 16 December 2015

Abstract

How evolutionary changes in body size are brought about by variance in developmental timing and/or growth rates (also known as heterochrony) is a topic of considerable interest in evolutionary biology1. In particular, extreme size change leading to gigantism occurred within the dinosaurs on multiple occasions2. Whether this change was brought about by accelerated growth, delayed maturity or a combination of both processes is unknown. A better understanding of relationships between non-avian dinosaur groups and the newfound capacity to reconstruct their growth curves make it possible to address these questions quantitatively3. Here we study growth patterns within the Tyrannosauridae, the best known group of large carnivorous dinosaurs, and determine the developmental means by which Tyrannosaurus rex, weighing 5,000 kg and more, grew to be one of the most enormous terrestrial carnivorous animals ever. T. rex had a maximal growth rate of 2.1 kg d-1, reached skeletal maturity in two decades and lived for up to 28 years. T. rex's great stature was primarily attained by accelerating growth rates beyond that of its closest relatives.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Growth-line counts in tyrannosaurids and reptiles of known ages.
Figure 2: Logistic growth curves for Tyrannosaurus and three related tyrannosaurids.

References

  1. 1

    Gould, S. J. Ontogeny and Phylogeny (Harvard Univ. Press, Cambridge, Massachusetts, 1977)

    Google Scholar 

  2. 2

    Carrano, M. T. in Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles (eds Carrano, M. T., Blob, R. W., Gaudin, T. & Wible, J.) (Univ. Chicago Press, Chicago, in the press)

  3. 3

    Erickson, G. M., Curry-Rogers, K. & Yerby, S. Dinosaur growth patterns and rapid avian growth rates. Nature 412, 429–433 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Brochu, C. A. Osteology of Tyrannosaurus rex: Insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. J. Vert. Paleontol. Mem. 22(7), 1–138 (2003)

    Google Scholar 

  5. 5

    Carrano, M. T. & Hutchinson, J. R. Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). J. Morphol. 253, 207–228 (2002)

    Article  Google Scholar 

  6. 6

    Brochu, C. A. A digitally rendered endocast for Tyrannosaurus rex. J. Vert. Paleontol. 20, 1–6 (2003)

    Article  Google Scholar 

  7. 7

    Currie, P. J. Possible evidence of gregarious behavior in tyrannosaurids. GAIA 15, 271–277 (1998)

    Google Scholar 

  8. 8

    Erickson, G. M. Breathing life into Tyrannosaurus rex. Scient. Am. 9, 42–49 (1999)

    Article  Google Scholar 

  9. 9

    Chin, K., Tokaryk, T. T., Erickson, G. M. & Calk, L. C. A king-sized theropod coprolite. Nature 393, 680–682 (1998)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Erickson, G. M. et al. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature 382, 706–708 (1996)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hutchinson, J. & Garcia, M. Tyrannosaurus was not a fast runner. Nature 415, 1018–1021 (2002)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Holtz, T. R. in Mesozoic Vertebrate Life (eds Tanke, D. & Carpenter, K.) 64–83 (Indiana Univ. Press, Bloomington, 2001)

    Google Scholar 

  13. 13

    Currie, P. J. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. Acta Palaeontol. Pol. 48, 191–226 (2003)

    Google Scholar 

  14. 14

    Chinsamy, A. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontol. Afr. 27, 77–82 (1993)

    Google Scholar 

  15. 15

    Weishampel, D. B. & Horner, J. R. in Dinosaur Eggs and Babies (eds Carpenter, K., Hirsch, K. F. & Horner, J. R.) 229–243 (Cambridge Univ. Press, Cambridge, 1994)

    Google Scholar 

  16. 16

    Francillon-Viellot, H., et al. in Biomineralization: Patterns and Evolutionary Trends (ed. Carter, J. G.) 471–530 (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  17. 17

    Larson, P. & Donnan, K. Rex Appeal (Invisible Cities Press, Montpelier, 2002)

    Google Scholar 

  18. 18

    Horner, J. R. & Lessem, D. The Complete T. rex (Simon & Schuster, New York, 1993)

    Google Scholar 

  19. 19

    Currie, P. J., Hurum, J. H. & Sabath, K. Skull structure and evolution in tyrannosaurid dinosaurs. Acta Palaeontol. Pol. 48, 227–234 (2003)

    Google Scholar 

  20. 20

    Carr, T. D. Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria). J. Vert. Paleontol. 19, 497–520 (1999)

    Article  Google Scholar 

  21. 21

    Castanet, J. & Naulleau, G. Données expérimentales sur la valeur des marques squelettiques comme indicateur de l' age chez Vipera aspis (L.) (Ophidia, Viperidae). Zool. Scripta 3, 201–208 (1974)

    Article  Google Scholar 

  22. 22

    de Buffrenil, V. & Castanet, J. Age estimation by skeletochronology in the Nile monitor (Varanus niloticus), a highly exploited species. J. Herpetol. 34, 414–424 (2000)

    Article  Google Scholar 

  23. 23

    Maddison, W. P. & Maddison, D. R. MacClade Version 3; Analysis of Phylogeny and Character Evolution (Sinauer Associates, Sunderland, MA, 1992)

    MATH  Google Scholar 

  24. 24

    Anderson, J. F., Hall-Martin, A. & Russell, D. A. Long bone circumference and weight in mammals, birds, and dinosaurs. J. Zool. A 207, 53–61 (1985)

    Article  Google Scholar 

  25. 25

    Sussman, M. Growth and Development (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)

    Google Scholar 

  26. 26

    Coria, R. A. & Salgado, L. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377, 224–226 (1995)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Erickson, G. M., de Ricqles, A., de Buffrenil, V., Molnar, R. E. & Bayless, M. A. Vermiform bones and the evolution of gigantism in Megalania—how a reptilian fox became a lion. J. Vert. Paleontol. 23, 966–970 (2003)

    Article  Google Scholar 

  28. 28

    Case, T. E. On the evolution and adaptive significance of post-natal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53, 243–282 (1978)

    CAS  Article  Google Scholar 

  29. 29

    Seebacher, F. A new method to calculate allometric length-mass relationships of dinosaurs. J. Vert. Paleontol. 21, 51–60 (2001)

    Article  Google Scholar 

  30. 30

    Currie, P. J. Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia. Can. J. Earth Sci 40, 651–665 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank O. Rieppel and B. Simpson (The Field Museum), L. Chiappe (Los Angeles County Museum of Natural History), P. Larson and N. Larson (Black Hills Institute), B. Stein and M. Triebold (Triebold Paleontology), D. Evans (Indianapolis Children's Museum), C. Mehling (American Museum of Natural History), S. Williams, M. Henderson and L. Cranford (Burpee Museum of Natural History), J. Gardner, D. Tanke and D. Brinkman (Royal Tyrrell Museum of Palaeontology), T. Carr (University of Toronto), F. W. King and K. Krysco (Florida Museum of Natural History), K. Womble (Florida State University), M. Bayless (Berkeley, California) and A. Woodward (Florida Fish and Wildlife Conservation Commission) for assistance with this research. The NSF and the College of Arts and Sciences of Florida State University generously funded this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Erickson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Contains (1) the number of substantial finds of Tyrannosaurus rex; and (2) body mass estimation in non-avian dinosaurs. (DOC 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erickson, G., Makovicky, P., Currie, P. et al. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430, 772–775 (2004). https://doi.org/10.1038/nature02699

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing