Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome

Abstract

Mutations have pivotal functions in the onset of genetic diseases and are the fundamental substrate for evolution. However, present estimates of the spontaneous mutation rate and spectrum are derived from indirect and biased measurements. For instance, mutation rate estimates for Caenorhabditis elegans are extrapolated from observations on a few genetic loci with visible phenotypes and vary over an order of magnitude1. Alternative approaches in mammals, relying on phylogenetic comparisons of pseudogene loci2 and fourfold degenerate codon positions3, suffer from uncertainties in the actual number of generations separating the compared species and the inability to exclude biases associated with natural selection. Here we provide a direct and unbiased estimate of the nuclear mutation rate and its molecular spectrum with a set of C. elegans mutation-accumulation lines that reveal a mutation rate about tenfold higher than previous indirect estimates and an excess of insertions over deletions. Because deletions dominate patterns of C. elegans pseudogene variation4,5, our observations indicate that natural selection might be significant in promoting small genome size, and challenge the prevalent assumption that pseudogene divergence accurately reflects the spontaneous mutation spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robertson, H. M. The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res. 10, 192–203 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Witherspoon, D. J. & Robertson, H. M. Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae. J. Mol. Evol. 56, 751–769 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Vassilieva, L. L., Hook, A. M. & Lynch, M. The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution 54, 1234–1246 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Denver, D. R., Morris, K. & Thomas, W. K. Phylogenetics in Caenorhabditis elegans: an analysis of divergence and outcrossing. Mol. Biol. Evol. 20, 393–400 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Denver, D. R., Morris, K., Lynch, M., Vassilieva, L. L. & Thomas, W. K. High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science 289, 2342–2344 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ochman, H. Neutral mutations and neutral substitutions in bacterial genomes. Mol. Biol. Evol. 20, 2091–2096 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Petrov, D. A., Lozovskaya, E. R. & Hartl, D. L. High intrinsic rate of DNA loss in Drosophila. Nature 384, 346–349 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Petrov, D. A. & Hartl, D. L. Pseudogene evolution and natural selection for a compact genome. J. Hered. 91, 221–227 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Hirotsune, S. et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423, 91–96 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Balakirev, E. S. & Ayala, F. J. Pseudogenes: are they ‘junk’ or functional DNA? Annu. Rev. Genet. 37, 123–151 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Charlesworth, B. The changing sizes of genes. Nature 384, 315–316 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Marais, G., Mouchiroud, D. & Duret, L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc. Natl Acad. Sci. USA 98, 5688–5692 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hahn, M. W., Stajich, J. E. & Wray, G. A. The effects of selection against spurious transcription factor binding sites. Mol. Biol. Evol. 20, 901–906 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Langley, C. H. & Ito, K. Spontaneous mutability in Drosophila melanogaster, in natural and laboratory environments. Mutat. Res. 36, 385–386 (1976)

    Article  CAS  PubMed  Google Scholar 

  20. Gunsalus, K. C., Yueh, W. C., MacMenamin, P. & Piano, F. RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects. Nucleic Acids Res. 32, D406–D410 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naclerio, G. et al. Molecular and genomic organization of clusters of repetitive DNA sequences in Caenorhabditis elegans. J. Mol. Biol. 226, 159–168 (1992)

    Article  CAS  PubMed  Google Scholar 

  22. Keightley, P. D. & Ohnishi, O. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics 148, 753–766 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies, E. K., Peters, A. D. & Keightley, P. D. High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science 285, 1748–1751 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Stein, L. D. et al. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 1, 166–192 (2003)

    Article  CAS  Google Scholar 

  25. Kondrashov, A. S. & Houle, D. Genotype–environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc. R. Soc. Lond. B 258, 221–227 (1994)

    Article  ADS  CAS  Google Scholar 

  26. Higgins, D. G., Thompson, J. D. & Gibson, T. J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383–402 (1994)

    Article  Google Scholar 

  27. Hill, F., Gemund, C., Benes, V., Ansorge, W. & Gibson, T. J. An estimate of large-scale sequencing accuracy. EMBO Rep. 1, 29–31 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richterich, P. Estimation of errors in ‘raw’ DNA sequences: a validation study. Genome Res. 8, 251–259 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Denver, D. R. et al. Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans. J. Mol. Evol. 58, 584–595 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. L. Vassilieva, S. Estes, V. Katju and C. Steding for their respective roles in propagating and maintaining the MA lines over the past 5 years; D. Ash for help with primer sequence design and DNA sequencing; and the Caenorhabditis Genetics Center for providing the C. elegans natural isolates. This work was supported by a University of Missouri Research Board grant to W.K.T., and an NIH grant to M.L. and W.K.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dee R. Denver.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

This includes Table S1 and Figures S1 and S2 with their respective legends. (DOC 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denver, D., Morris, K., Lynch, M. et al. High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430, 679–682 (2004). https://doi.org/10.1038/nature02697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02697

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing