Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the calcium pump with a bound ATP analogue

Abstract

P-type ATPases are ATP-powered ion pumps that establish ion concentration gradients across cell and organelle membranes. Here, we describe the crystal structure of the Ca2+ pump of skeletal muscle sarcoplasmic reticulum, a representative member of the P-type ATPase superfamily, with an ATP analogue, a Mg2+ and two Ca2+ ions in the respective binding sites. In this state, the ATP analogue reorganizes the three cytoplasmic domains (A, N and P), which are widely separated without nucleotide, by directly bridging the N and P domains. The structure of the P-domain itself is altered by the binding of the ATP analogue and Mg2+. As a result, the A-domain is tilted so that one of the transmembrane helices moves to lock the cytoplasmic gate of the transmembrane Ca2+-binding sites. This appears to be the mechanism for occluding the bound Ca2+ ions, before releasing them into the lumen of the sarcoplasmic reticulum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Front views (parallel to the membrane (xy) plane) of Ca2+-ATPase with (E1·AMPPCP) and without (E1·2Ca2+) AMPPCP (shown in space fill), an ATP analogue, in the presence of 10 mM Ca2+.
Figure 2: Superimposition of the E1·2Ca2+ and E1·AMPPCP forms of Ca2+-ATPase fitted with the transmembrane domain. E1·2Ca2+, violet; E1·AMPPCP, cyan (A-domain and M1–M3 helices), light green (N-domain) and orange (P-domain and M4–M10 helices).
Figure 3: Transmembrane Ca2+-binding sites (I and II) and the movement of the M1 helix.
Figure 4: Omit-annealed Fo - Fc map around AMPPCP at 5σ (a) and the hydrogen-bonding network around AMPPCP (b).
Figure 5: Superposition of the P-domain in E1·2Ca2+ and E1·AMPPCP, fitted with the 15 residues at the N-terminal end of the M5 helix.
Figure 6: Water-accessible surface of the cytoplasmic domains in E1·AMPPCP showing the A–N interface.

Similar content being viewed by others

References

  1. Møller, J. V., Juul, B. & le Maire, M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta 1286, 1–51 (1996)

    Article  PubMed  Google Scholar 

  2. Post, R. L., Hegyvary, C. & Kume, S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972)

    CAS  PubMed  Google Scholar 

  3. Albers, R. W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967)

    Article  CAS  PubMed  Google Scholar 

  4. de Meis, L. & Vianna, A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48, 275–292 (1979)

    Article  CAS  PubMed  Google Scholar 

  5. Mintz, E. & Guillain, F. Ca2+ transport by the sarcoplasmic reticulum ATPase. Biochim. Biophys. Acta 1318, 52–70 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Xu, C., Rice, W. J., He, W. & Stokes, D. L. A structural model for the catalytic cycle of Ca2+-ATPase. J. Mol. Biol. 316, 201–211 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. MacLennan, D. H., Rice, W. J. & Green, N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272, 28815–28818 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. MacLennan, D. H., Brandl, C. J., Korczak, B. & Green, N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316, 696–700 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Brandl, C. J., deLeon, S., Martin, D. R. & MacLennan, D. H. Adult forms of the Ca2+ ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J. Biol. Chem. 262, 3768–3774 (1987)

    CAS  PubMed  Google Scholar 

  12. Sagara, Y. & Inesi, G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J. Biol. Chem. 266, 13503–13506 (1991)

    CAS  PubMed  Google Scholar 

  13. Toyoshima, C., Nomura, H. & Sugita, Y. Structural basis of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. FEBS Lett. 555, 106–110 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Brünger, A. T. Extension of molecular replacement: a new search strategy based on Patterson correlation refinement. Acta Crystallogr. A 46, 46–57 (1990)

    Article  Google Scholar 

  15. Danko, S., Yamasaki, K., Daiho, T., Suzuki, H. & Toyoshima, C. Organization of cytoplasmic domains of sarcoplasmic reticulum Ca2+-ATPase in E1P and E1ATP states: a limited proteolysis study. FEBS Lett. 505, 129–135 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Juul, B. et al. Do transmembrane segments in proteolyzed sarcoplasmic reticulum Ca2+-ATPase retain their functional Ca2+ binding properties after removal of cytoplasmic fragments by proteinase K? J. Biol. Chem. 270, 20123–20134 (1995)

    Article  CAS  PubMed  Google Scholar 

  17. Ma, H., Inesi, G. & Toyoshima, C. Substrate-induced conformational fit and headpiece closure in the Ca2+ATPase (SERCA). J. Biol. Chem. 278, 28938–28943 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Andersen, J. P. & Vilsen, B. Amino acids Asn796 and Thr799 of the Ca2+-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites. J. Biol. Chem. 269, 15931–15936 (1994)

    CAS  PubMed  Google Scholar 

  19. Zhang, Z. et al. Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase. Biochemistry 39, 8758–8767 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Orlowski, S. & Champeil, P. Kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum ATPase. Biochemistry 30, 352–361 (1991)

    Article  CAS  PubMed  Google Scholar 

  21. Vilsen, B. & Andersen, J. P. Mutation to the glutamate in the fourth membrane segment of Na+, K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Biochemistry 37, 10961–10971 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. Inesi, G., Ma, H., Lewis, D. & Xu, C. Ca2+ occlusion and gating function of Glu309 in the fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J. Biol. Chem. (in the press)

  23. Einholm, A. P., Vilsen, B. & Andersen, J. P. Importance of transmembrane segment M1 of the sarcoplasmic reticulum Ca2+-ATPase in Ca2+ occlusion and phosphoenzyme processing. J. Biol. Chem. 279, 15888–15896 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Bilwes, A. M., Quezada, C. M., Croal, L. R., Crane, B. R. & Simon, M. I. Nucleotide binding by the histidine kinase CheA. Nature Struct. Biol. 8, 353–360 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Hilge, M. et al. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Nature Struct. Biol. 10, 468–474 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. McIntosh, D. B., Woolley, D. G., Vilsen, B. & Andersen, J. P. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. J. Biol. Chem. 271, 25778–25789 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. Cappello, V., Tramontano, A. & Koch, U. Classification of proteins based on the properties of the ligand-binding site: the case of adenine-binding proteins. Proteins 47, 106–115 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Liu, M. & Barth, A. Mapping interactions between the Ca2+-ATPase and its substrate ATP with infrared spectroscopy. J. Biol. Chem. 278, 10112–10118 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Clarke, D. M., Loo, T. W. & MacLennan, D. H. Functional consequences of alterations to amino acids located in the nucleotide binding domain of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 265, 22223–22227 (1990)

    CAS  PubMed  Google Scholar 

  30. Maruyama, K. et al. Functional consequences of alterations to amino acids located in the catalytic center (isoleucine 348 to threonine 357) and nucleotide-binding domain of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 13038–13042 (1989)

    CAS  PubMed  Google Scholar 

  31. McIntosh, D. B., Woolley, D. G., MacLennan, D. H., Vilsen, B. & Andersen, J. P. Interaction of nucleotides with Asp351 and the conserved phosphorylation loop of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 274, 25227–25236 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. Clausen, J. D., McIntosh, D. B., Vilsen, B., Woolley, D. G. & Andersen, J. P. Importance of conserved N-domain residues Thr441, Glu442, Lys515, Arg560, and Leu562 of sarcoplasmic reticulum Ca2+-ATPase for MgATP binding and subsequent catalytic steps. Plasticity of the nucleotide-binding site. J. Biol. Chem. 278, 20245–20258 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Jacobsen, M. D., Pedersen, P. A. & Jorgensen, P. L. Importance of Na,K-ATPase residue α1-Arg544 in the segment Arg544-Asp567 for high-affinity binding of ATP, ADP, or MgATP. Biochemistry 41, 1451–1456 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. McIntosh, D. B. The ATP binding sites of P-type ion transport ATPases. Adv. Mol. Cell Biol. 23A, 33–99 (1998)

    CAS  Google Scholar 

  35. Aravind, L., Galperin, M. Y. & Koonin, E. V. The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem. Sci. 23, 127–129 (1998)

    Article  CAS  PubMed  Google Scholar 

  36. Wang, W. et al. Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic ‘snapshots’ of intermediate states. J. Mol. Biol. 319, 421–431 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Lahiri, S. D., Zhang, G., Dunaway-Mariano, D. & Allen, K. N. Caught in the act: the structure of phosphorylated β-phosphoglucomutase from Lactococcus lactis. Biochemistry 41, 8351–8359 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. Eletr, S. & Inesi, G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim. Biophys. Acta 282, 174–179 (1972)

    Article  CAS  PubMed  Google Scholar 

  39. Coll, R. J. & Murphy, A. J. Purification of the CaATPase of sarcoplasmic reticulum by affinity chromatography. J. Biol. Chem. 259, 14249–14254 (1984)

    CAS  PubMed  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  PubMed  Google Scholar 

  42. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  43. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  CAS  PubMed  Google Scholar 

  44. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  45. Hayward, S. Structural principles governing domain motions in proteins. Proteins 36, 425–435 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Tsuda for help in many aspects of this work; M. Kawamoto and H. Sakai for data collection at BL41XU of SPring-8; N. Miyashita for making many movies; and Y. Ohuchi for computer programs. We are grateful to D.B. McIntosh for help in improving the manuscript and G. Inesi for communicating unpublished results to us. This work was supported in part by a Creative Science Project Grant from the Ministry of Education, Culture, Sports, Science and Technology, the Japan New Energy and Industry Technology Development Organization, and the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikashi Toyoshima.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Additional information

The atomic coordinates are deposited in the PDB under accession code 1VFP.

Supplementary information

Supplementary Figure 1

Configuration of cytoplasmic domains (A, N and P) in E2(TG) and E1·AMPPCP in ribbon representation. (JPG 161 kb)

Supplementary Figure 2

Details of the interaction between the A- and P-domains, viewed from the back side. (JPG 249 kb)

Supplementary Figure 3

A solvent flattened map showing the N-domain – P-domain interface calculated from the initial model containing only the P-domain and M3-M10 helices. (JPG 329 kb)

Supplementary Figure 4

A solvent flattened map showing the electron density representing the M1 and M2 helices, calculated from the model excluding them. (JPG 313 kb)

Supplementary Figure 5

Electron density (composite omit and Fo – Fc) maps around AMPPCP calculated for the P21 crystal using the model constructed for the C2 crystal before introducing AMPPCP in the model. (JPG 188 kb)

Supplementary Movie

A movie showing the conformation changes in Ca2+-ATPase for the sequence E2 → E1·2Ca2+ → E1·ATP, made by N. Miyashita using a morphing technique. (MOV 1211 kb)

Supplementary Figure Legends

Legends to the Supplementary Figures 1-5 and Supplementary Movie. (DOC 22 kb)

Supplementary Methods

Detailed description on the structure determination by molecular replacement. Containing one Table showing the progress of refinement. (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyoshima, C., Mizutani, T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430, 529–535 (2004). https://doi.org/10.1038/nature02680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02680

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing